Enhanced Heart Attack Prediction Using eXtreme Gradient Boosting

Authors

  • Mingyang Feng Computer Information Technology, Northern Arizona University, Flagstaff, USA
  • Xiaosong Wang Computer Network Technology, Xuzhou University of Technology, Xuzhou, China
  • Zhiming Zhao Computer Science, East China University of Science and Technology, Shanghai, China
  • Chufeng Jiang Computer Science, The University of Texas at Austin, Fremont, USA
  • Jize Xiong Computer Information Technology, Northern Arizona University, Flagstaff, USA
  • Ning Zhang Computer Science, University of Birmingham, Dubai, United Arab Emirates

DOI:

https://doi.org/10.53469/jtpes.2024.04(04).02

Keywords:

Heart attack prediction, Data analysis, XGBoost

Abstract

Heart attack prediction is a vital component of cardiovascular healthcare, aiming to identify individuals at risk for timely intervention and improved patient outcomes. Despite significant advancements in predictive modeling techniques, several challenges persist, including algorithmic limitations, interpretability issues, data dependence, and scalability concerns. These challenges underscore the need for robust, interpretable, and generalizable predictive models capable of handling the complexities of medical data effectively. In this study, we propose a novel approach leveraging the eXtreme Gradient Boosting (XGBoost) algorithm for heart attack analysis and prediction. We conducted a comprehensive analysis of heart disease datasets, employing rigorous data preprocessing, feature selection, and hyperparameter optimization techniques to develop a highly accurate and interpretable predictive model. Our results demonstrate the efficacy of the XGBoost algorithm in capturing intricate patterns from medical data, achieving superior predictive performance across various metrics. The proposed model addresses the existing challenges in heart attack prediction, offering a promising solution for enhancing cardiovascular healthcare outcomes.

References

Patil, S. B., & Kumaraswamy, Y. S. (2009). Extraction of significant patterns from heart disease warehouses for heart attack prediction. IJCSNS, 9(2), 228-235.

Ghadge, P., Girme, V., Kokane, K., & Deshmukh, P. (2015). Intelligent heart attack prediction system using big data. International journal of recent research in mathematics computer science and information technology, 2(2), 73-77.

Manikandan, S. (2017, August). Heart attack prediction system. In 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS) (pp. 817-820). IEEE.

Alexander, C. A., & Wang, L. (2017). Big data analytics in heart attack prediction. J Nurs Care, 6(393), 2167-1168.

Mohamed, S. A., & Balamurali, M. (2018). Predicting The Heart Attack From Accessible Patients Medical Datasets Using Data Mining Technique. International Journal of Innovative Research and Advanced Studies (IJIRAS), 5(1), 356-362.

Peng, Q., Zheng, C., & Chen, C. (2024). A Dual-Augmentor Framework for Domain Generalization in 3D Human Pose Estimation. arXiv preprint arXiv:2403.11310.

Ware, S., Rakesh, S., & Choudhary, B. (2020). Heart attack prediction by using machine learning techniques. no, 5, 1577-1580.

Mehmood, A., Iqbal, M., Mehmood, Z., Irtaza, A., Nawaz, M., Nazir, T., & Masood, M. (2021). Prediction of heart disease using deep convolutional neural networks. Arabian Journal for Science and Engineering, 46(4), 3409-3422.

Nandy, S., Adhikari, M., Balasubramanian, V., Menon, V. G., Li, X., & Zakarya, M. (2023). An intelligent heart disease prediction system based on swarm-artificial neural network. Neural Computing and Applications, 35(20), 14723-14737.

Yadav, A. L., Soni, K., & Khare, S. (2023, July). Heart Diseases Prediction using Machine Learning. In 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-7). IEEE.

Saikumar, K., & Rajesh, V. (2024). A machine intelligence technique for predicting cardiovascular disease (CVD) using Radiology Dataset. International Journal of System Assurance Engineering and Management, 15(1), 135-151.

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI blog, 1(8), 9.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. Advances in neural information processing systems, 33, 1877-1901.

Vishwanathan, S. V. M., & Murty, M. N. (2002, May). SSVM: a simple SVM algorithm. In Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No. 02CH37290) (Vol. 3, pp. 2393-2398). IEEE.

Guo, G., Wang, H., Bell, D., Bi, Y., & Greer, K. (2003). KNN model-based approach in classification. In On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences, CoopIS, DOA, and ODBASE 2003, Catania, Sicily, Italy, November 3-7, 2003. Proceedings (pp. 986-996). Springer Berlin Heidelberg.

Rigatti, S. J. (2017). Random forest. Journal of Insurance Medicine, 47(1), 31-39.

Maulud, D., & Abdulazeez, A. M. (2020). A review on linear regression comprehensive in machine learning. Journal of Applied Science and Technology Trends, 1(2), 140-147.

Webb, G. I., Keogh, E., & Miikkulainen, R. (2010). Naïve Bayes. Encyclopedia of machine learning, 15(1), 713-714.

Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794).

Popokh, L., Su, J., Nair, S., & Olinick, E. (2021, September). IllumiCore: Optimization Modeling and Implementation for Efficient VNF Placement. In 2021 International Conference on Software, Telecommunications and Computer Networks (SoftCOM) (pp. 1-7). IEEE.

Liu, T., Xu, C., Qiao, Y., Jiang, C., & Chen, W. (2024). News recommendation with attention mechanism. arXiv preprint arXiv:2402.07422.

Bao, W., Che, H., & Zhang, J. (2020, December). Will_Go at SemEval-2020 Task 3: An accurate model for predicting the (graded) effect of context in word similarity based on BERT. In Proceedings of the Fourteenth Workshop on Semantic Evaluation (pp. 301-306).

Zhou, Z., Xu, C., Qiao, Y., Ni, F., & Xiong, J. (2024). An Analysis of the Application of Machine Learning in Network Security. Journal of Industrial Engineering and Applied Science, 2(2), 5-12.

Su, J., Nair, S., & Popokh, L. (2023, February). EdgeGYM: a reinforcement learning environment for constraint-aware NFV resource allocation. In 2023 IEEE 2nd International Conference on AI in Cybersecurity (ICAIC) (pp. 1-7). IEEE.

Luo, Y., Wei, Z., Xu, G., Li, Z., Xie, Y., & Yin, Y. (2024). Enhancing E-commerce Chatbots with Falcon-7B and 16-bit Full Quantization. Journal of Theory and Practice of Engineering Science, 4(02), 52-57.

Xu, C., Yu, J., Chen, W., & Xiong, J. (2024, January). Deep learning in photovoltaic power generation forecasting: Cnn-lstm hybrid neural network exploration and research. In The 3rd International scientific and practical conference “Technologies in education in schools and universities”(January 23-26, 2024) Athens, Greece. International Science Group. 2024. 363 p. (p. 295).

Liu, T., Cai, Q., Xu, C., Zhou, Z., Xiong, J., Qiao, Y., & Yang, T. (2024). Image Captioning in news report scenario. arXiv preprint arXiv:2403.16209.

Xiong, J., Feng, M., Wang, X., Jiang, C., Zhang, N., & Zhao, Z. (2024). Decoding sentiments: Enhancing covid-19 tweet analysis through bert-rcnn fusion. Journal of Theory and Practice of Engineering Science, 4(01), 86-93.

Yin, Y., Xu, G., Xie, Y., Luo, Y., Wei, Z., & Li, Z. (2024). Utilizing Deep Learning for Crystal System Classification in Lithium-Ion Batteries. Journal of Theory and Practice of Engineering Science, 4(03), 199-206.

Su, J., Nair, S., & Popokh, L. (2022, November). Optimal resource allocation in sdn/nfv-enabled networks via deep reinforcement learning. In 2022 IEEE Ninth International Conference on Communications and Networking (ComNet) (pp. 1-7). IEEE.

Xie, Y., Li, Z., Yin, Y., Wei, Z., Xu, G., & Luo, Y. (2024). Advancing Legal Citation Text Classification A Conv1D-Based Approach for Multi-Class Classification. Journal of Theory and Practice of Engineering Science, 4(02), 15-22.

Liu, T., Xu, C., Qiao, Y., Jiang, C., & Yu, J. (2024). Particle Filter SLAM for Vehicle Localization. arXiv preprint arXiv:2402.07429.

Yan, C. (2019, October). Predict Lightning Location and Movement with Atmospherical Electrical Field Instrument. In 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON) (pp. 0535-0537). IEEE.

Wang, X., Qiao, Y., Xiong, J., Zhao, Z., Zhang, N., Feng, M., & Jiang, C. (2024). Advanced Network Intrusion Detection with TabTransformer. Journal of Theory and Practice of Engineering Science, 4(03), 191-198.

Qiao, Y., Ni, F., Xia, T., Chen, W., & Xiong, J. (2024, January). Automatic recognition of static phenomena in retouched images: A novel approach. In The 1st International scientific and practical conference “Advanced technologies for the implementation of new ideas”(January 09-12, 2024) Brussels, Belgium. International Science Group. 2024. 349 p. (p. 287).

Xu, C., Qiao, Y., Zhou, Z., Ni, F., & Xiong, J. (2024). Accelerating Semi-Asynchronous Federated Learning. arXiv preprint arXiv:2402.10991.

Liu, S., Wu, K., Jiang, C., Huang, B., & Ma, D. (2023). Financial time-series forecasting: Towards synergizing performance and interpretability within a hybrid machine learning approach. arXiv preprint arXiv:2401.00534.

Zhao, Z., Zhang, N., Xiong, J., Feng, M., Jiang, C., & Wang, X. (2024). Enhancing E-commerce Recommendations: Unveiling Insights from Customer Reviews with BERTFusionDNN. Journal of Theory and Practice of Engineering Science, 4(02), 38-44.

Liu, H., Shen, Y., Yu, S., Gao, Z., & Wu, T. (2024). Deep Reinforcement Learning for Mobile Robot Path Planning. arXiv preprint arXiv:2404.06974.

Su, J., Jiang, C., Jin, X., Qiao, Y., Xiao, T., Ma, H., ... & Lin, J. (2024). Large Language Models for Forecasting and Anomaly Detection: A Systematic Literature Review. arXiv preprint arXiv:2402.10350.

Zhu, Armando, Keqin, Li, Tong, Wu, Peng, Zhao, Wenjing, Zhou, Bo, Hong. "Cross-Task Multi-Branch Vision Transformer for Facial Expression and Mask Wearing Classification". arXiv preprint arXiv:2404.14606. (2024).

Liu, T., Cai, Q., Xu, C., Zhou, Z., Xiong, J., Qiao, Y., & Yang, T. (2024). Image Captioning in news report scenario. arXiv preprint arXiv:2403.16209.

Zhou, Z., Xu, C., Qiao, Y., Xiong, J., & Yu, J. (2024). Enhancing Equipment Health Prediction with Enhanced SMOTE-KNN. Journal of Industrial Engineering and Applied Science, 2(2), 13-20.

Ru, J., Yu, H., Liu, H., Liu, J., Zhang, X., & Xu, H. (2022). A Bounded Near-Bottom Cruise Trajectory Planning Algorithm for Underwater Vehicles. Journal of Marine Science and Engineering, 11(1), 7.

Yan, C., Qiu, Y., & Zhu, Y. (2021). Predict Oil Production with LSTM Neural Network. In Proceedings of the 9th International Conference on Computer Engineering and Networks (pp. 357-364). Springer Singapore.

Ning, Q., Zheng, W., Xu, H., Zhu, A., Li, T., Cheng, Y., ... & Wang, K. (2022). Rapid segmentation and sensitive analysis of CRP with paper-based microfluidic device using machine learning. Analytical and Bioanalytical Chemistry, 414(13), 3959-3970.

Zhu, A., Li, J., & Lu, C. (2021). Pseudo view representation learning for monocular RGB-D human pose and shape estimation. IEEE Signal Processing Letters, 29, 712-716.

Downloads

Published

2024-04-25

How to Cite

Feng, M., Wang, X., Zhao, Z., Jiang, C., Xiong, J., & Zhang, N. (2024). Enhanced Heart Attack Prediction Using eXtreme Gradient Boosting. Journal of Theory and Practice of Engineering Science, 4(04), 9–16. https://doi.org/10.53469/jtpes.2024.04(04).02