Advanced Network Intrusion Detection with TabTransformer
DOI:
https://doi.org/10.53469/jtpes.2024.04(03).18Keywords:
Network security, Intrusion detection, TabTransformerAbstract
In today's digital era, the security of networked systems is of utmost importance amidst the increasing prevalence of cyber threats and sophisticated intrusion techniques. This paper addresses the critical need for robust network intrusion detection systems (NIDS) in today's digital landscape, amidst escalating cyber threats. Leveraging a dataset derived from a simulated military network environment, we explore various intrusion scenarios encountered in cyber warfare. Reviewing existing literature reveals a spectrum of methodologies, including anomaly-based and deep learning approaches. To enhance current methodologies, we propose a binary classification framework using TabTransformer, a transformer-based architecture, for network intrusion detection. We present detailed methodology, encompassing data preprocessing, model architecture, and evaluation metrics, with empirical results demonstrating the efficacy of our approach in mitigating cyber threats and enhancing network security.
References
Su, J., Nair, S., & Popokh, L. (2023, February). EdgeGYM: a reinforcement learning environment for constraint-aware NFV resource allocation. In 2023 IEEE 2nd International Conference on AI in Cybersecurity (ICAIC) (pp. 1-7). IEEE.
Popokh, L., Su, J., Nair, S., & Olinick, E. (2021, September). IllumiCore: Optimization Modeling and Implementation for Efficient VNF Placement. In 2021 International Conference on Software, Telecommunications and Computer Networks (SoftCOM) (pp. 1-7). IEEE.
Jin, X., Manandhar, S., Kafle, K., Lin, Z., & Nadkarni, A. (2022, November). Understanding iot security from a market-scale perspective. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security (pp. 1615-1629).
Jin, X., Katsis, C., Sang, F., Sun, J., Bertino, E., Kompella, R. R., & Kundu, A. (2023). Prometheus: Infrastructure Security Posture Analysis with AI-generated Attack Graphs. arXiv preprint arXiv:2312.13119.
Xiao, T., Xu, Z., He, W., Su, J., Zhang, Y., Opoku, R., ... & Jiang, Z. (2024). XTSFormer: Cross-Temporal-Scale Transformer for Irregular Time Event Prediction. arXiv preprint arXiv:2402.02258.
Dang, B., Ma, D., Li, S., Dong, X., Zang, H., & Ding, R. (2024). Enhancing Kitchen Independence: Deep Learning-Based Object Detection for Visually Impaired Assistance. Academic Journal of Science and Technology, 9(2), 180–184.
Jin, X., Pei, K., Won, J. Y., & Lin, Z. (2022, November). Symlm: Predicting function names in stripped binaries via context-sensitive execution-aware code embeddings. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security (pp. 1631-1645).
Li, H., Ding, D., & Zhang, J. (2020). Comprehensive Evaluation Model on New Product Introduction of Convenience Stores Based on Multidimensional Data. In Data Science: 6th International Conference, ICDS 2019, Ningbo, China, May 15–20, 2019, Revised Selected Papers 6 (pp. 40-50). Springer Singapore.
Vinayakumar, R., Soman, K. P., & Poornachandran, P. (2017, September). Applying convolutional neural network for network intrusion detection. In 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp. 1222-1228). IEEE.
Luo, Y., Wei, Z., Xu, G., Li, Z., Xie, Y., & Yin, Y. (2024). Enhancing E-commerce Chatbots with Falcon-7B and 16-bit Full Quantization. Journal of Theory and Practice of Engineering Science, 4(02), 52-57.
Su, J., Jiang, C., Jin, X., Qiao, Y., Xiao, T., Ma, H., ... & Lin, J. (2024). Large Language Models for Forecasting and Anomaly Detection: A Systematic Literature Review. arXiv preprint arXiv:2402.10350. Retrieved from http://arxiv.org/abs/2402.10350
Liu, T., Xu, C., Qiao, Y., Jiang, C., & Chen, W. (2024). News Recommendation with Attention Mechanism. Journal of Industrial Engineering and Applied Science, 2(1), 21-26.
Ji, H., Xu, X., Su, G., Wang, J., & Wang, Y. (2024). Utilizing Machine Learning for Precise Audience Targeting in Data Science and Targeted Advertising. Academic Journal of Science and Technology, 9(2), 215-220.
Wang, X., Xiao, T., & Shao, J. (2021). EMRM: Enhanced Multi-source Review-Based Model for Rating Prediction. In Knowledge Science, Engineering and Management: 14th International Conference, KSEM 2021, Tokyo, Japan, August 14–16, 2021, Proceedings, Part III 14 (pp. 487-499). Springer International Publishing.
Jing, Z., Su, Y., Han, Y., Yuan, B., Liu, C., Xu, H., & Chen, K. (2024). When Large Language Models Meet Vector Databases: A Survey. arXiv preprint arXiv:2402.01763.
He, Z., Chen, W., Zhou, Y., Weng, H., & Shen, X. (2023). The Importance of AI Algorithm Combined With Tunable LCST Smart Polymers in Biomedical Applications. Frontiers in Computing and Intelligent Systems, 6(3), 92-95.
Bao, W., Che, H., & Zhang, J. (2020, December). Will_Go at SemEval-2020 Task 3: An accurate model for predicting the (graded) effect of context in word similarity based on BERT. In Proceedings of the Fourteenth Workshop on Semantic Evaluation (pp. 301-306).
Xie, Y., Li, Z., Yin, Y., Wei, Z., Xu, G., & Luo, Y. (2024). Advancing Legal Citation Text Classification A Conv1D-Based Approach for Multi-Class Classification. Journal of Theory and Practice of Engineering Science, 4(02), 15-22.
Xu, X., Yuan, B., Song, T., & Li, S. (2023, November). Curriculum Recommendations Using Transformer Base Model with InfoNCE Loss And Language Switching Method. In 2023 5th International Conference on Artificial Intelligence and Computer Applications (ICAICA) (pp. 389-393). IEEE.
Jin, X., Larson, J., Yang, W., & Lin, Z. (2023). Binary Code Summarization: Benchmarking ChatGPT/GPT-4 and Other Large Language Models. arXiv preprint arXiv:2312.09601.
Song, X., Wu, D., Zhang, B., Peng, Z., Dang, B., Pan, F., & Wu, Z. (2023). ZeroPrompt: Streaming Acoustic Encoders are Zero-Shot Masked LMs. INTERSPEECH 2023, 1648–1652.
Liu, Y., Yang, H., & Wu, C. (2023). Unveiling patterns: A study on semi-supervised classification of strip surface defects. IEEE Access, 11, 119933-119946.
Su, J., Nair, S., & Popokh, L. (2022, November). Optimal resource allocation in sdn/nfv-enabled networks via deep reinforcement learning. In 2022 IEEE Ninth International Conference on Communications and Networking (ComNet) (pp. 1-7). IEEE.
Gamage, S., & Samarabandu, J. (2020). Deep learning methods in network intrusion detection: A survey and an objective comparison. Journal of Network and Computer Applications, 169, 102767.
Ahmad, Z., Shahid Khan, A., Wai Shiang, C., Abdullah, J., & Ahmad, F. (2021). Network intrusion detection system: A systematic study of machine learning and deep learning approaches. Transactions on Emerging Telecommunications Technologies, 32(1), e4150.
Zhang, C., Jia, D., Wang, L., Wang, W., Liu, F., & Yang, A. (2022). Comparative research on network intrusion detection methods based on machine learning. Computers & Security, 121, 102861.
Talukder, M. A., Hasan, K. F., Islam, M. M., Uddin, M. A., Akhter, A., Yousuf, M. A., ... & Moni, M. A. (2023). A dependable hybrid machine learning model for network intrusion detection. Journal of Information Security and Applications, 72, 103405.
Khafaga, D. S., Karim, F. K., Abdelhamid, A. A., El-kenawy, E. S. M., Alkahtani, H. K., Khodadadi, N., ... & Ibrahim, A. (2023). Voting Classifier and Metaheuristic Optimization for Network Intrusion Detection. Computers, Materials & Continua, 74(2).
Huang, X., Khetan, A., Cvitkovic, M., & Karnin, Z. (2020). Tabtransformer: Tabular data modeling using contextual embeddings. arXiv preprint arXiv:2012.06678.
Garcia-Teodoro, P., Diaz-Verdejo, J., Maciá-Fernández, G., & Vázquez, E. (2009). Anomaly-based network intrusion detection: Techniques, systems and challenges. computers & security, 28(1-2), 18-28.
Catania, C. A., & Garino, C. G. (2012). Automatic network intrusion detection: Current techniques and open issues. Computers & Electrical Engineering, 38(5), 1062-1072.
Niyaz, Q., Sun, W., Javaid, A. Y., & Alam, M. (2015, December). A deep learning approach for network intrusion detection system. In Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (Formerly BIONETICS), BICT-15 (Vol. 15, No. 2015, pp. 21-26).
Javaid, A., Niyaz, Q., Sun, W., & Alam, M. (2016, May). A deep learning approach for network intrusion detection system. In Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS) (pp. 21-26).
Samrin, R., & Vasumathi, D. (2017, December). Review on anomaly based network intrusion detection system. In 2017 international conference on electrical, electronics, communication, computer, and optimization techniques (ICEECCOT) (pp. 141-147). IEEE.
Shone, N., Ngoc, T. N., Phai, V. D., & Shi, Q. (2018). A deep learning approach to network intrusion detection. IEEE transactions on emerging topics in computational intelligence, 2(1), 41-50.
Chaabouni, N., Mosbah, M., Zemmari, A., Sauvignac, C., & Faruki, P. (2019). Network intrusion detection for IoT security based on learning techniques. IEEE Communications Surveys & Tutorials, 21(3), 2671-2701.
Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. arXiv preprint arXiv:1607.06450.
Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training.
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI blog, 1(8), 9.
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. Advances in neural information processing systems, 33, 1877-1901.
Xiong, J., Feng, M., Wang, X., Jiang, C., Zhang, N., & Zhao, Z. (2024). Decoding sentiments: Enhancing covid-19 tweet analysis through bert-rcnn fusion. Journal of Theory and Practice of Engineering Science, 4(01), 86-93.
Zhao, Z., Zhang, N., Xiong, J., Feng, M., Jiang, C., & Wang, X. (2024). Enhancing E-commerce Recommendations: Unveiling Insights from Customer Reviews with BERTFusionDNN. Journal of Theory and Practice of Engineering Science, 4(02), 38-44.
Su, Jing, et al. "Large Language Models for Forecasting and Anomaly Detection: A Systematic Literature Review." arXiv preprint arXiv:2402.10350 (2024).
Chen, W., Shen, Z., Pan, Y., Tan, K., & Wang, C. (2024). Applying Machine Learning Algorithm to Optimize Personalized Education Recommendation System. Journal of Theory and Practice of Engineering Science, 4(01), 101-108.
Qiao, Y., Jin, J., Ni, F., Yu, J., & Chen, W. (2023). Application of machine learning in financial risk early warning and regional prevention and control: A systematic analysis based on shap. WORLD TRENDS, REALITIES AND ACCOMPANYING PROBLEMS OF DEVELOPMENT, 331.
Liu, S., Wu, K., Jiang, C., Huang, B., & Ma, D. (2023). Financial time-series forecasting: Towards synergizing performance and interpretability within a hybrid machine learning approach. arXiv preprint arXiv:2401.00534.
Dang, B., Ma, D., Li, S., Dong, X., Zang, H., & Ding, R. (2024). Enhancing Kitchen Independence: Deep Learning-Based Object Detection for Visually Impaired Assistance. Academic Journal of Science and Technology, 9(2), 180–184.
Ma, D., Dang, B., Li, S., Zang, H., & Dong, X. (2023). Implementation of computer vision technology based on artificial intelligence for medical image analysis. International Journal of Computer Science and Information Technology, 1(1), 69–76.
Qiao, Y., Ni, F., Xia, T., Chen, W., & Xiong, J. (2024, January). Automatic recognition of static phenomena in retouched images: A novel approach. In The 1st International scientific and practical conference “Advanced technologies for the implementation of new ideas”(January 09-12, 2024) Brussels, Belgium. International Science Group. 2024. 349 p. (p. 287).
Li, S., Kou, P., Ma, M., Yang, H., Huang, S., & Yang, Z. (2024). Application of Semi-supervised Learning in Image Classification: Research on Fusion of Labeled and Unlabeled Data. IEEE Access.
Niu, H., Li, H., Wang, J., Xu, X., & Ji, H. (2023). Enhancing computer digital signal processing through the utilization of rnn sequence algorithms. International Journal of Computer Science and Information Technology, 1(1), 60-68.
Wang, X., Xiao, T., Tan, J., Ouyang, D., & Shao, J. (2020). MRMRP: multi-source review-based model for rating prediction. In Database Systems for Advanced Applications: 25th International Conference, DASFAA 2020, Jeju, South Korea, September 24–27, 2020, Proceedings, Part II 25 (pp. 20-35). Springer International Publishing.
Vishwanathan, S. V. M., & Murty, M. N. (2002, May). SSVM: a simple SVM algorithm. In Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No. 02CH37290) (Vol. 3, pp. 2393-2398). IEEE.
Maulud, D., & Abdulazeez, A. M. (2020). A review on linear regression comprehensive in machine learning. Journal of Applied Science and Technology Trends, 1(2), 140-147.
Taud, H., & Mas, J. F. (2018). Multilayer perceptron (MLP). Geomatic approaches for modeling land change scenarios, 451-455.
Ni, F., Zang, H., & Qiao, Y. (2024, January). Smartfix: Leveraging machine learning for proactive equipment maintenance in industry 4.0. In The 2nd International scientific and practical conference “Innovations in education: prospects and challenges of today”(January 16-19, 2024) Sofia, Bulgaria. International Science Group. 2024. 389 p. (p. 313).
Liu, T., Xu, C., Qiao, Y., Jiang, C., & Yu, J. (2024). Particle Filter SLAM for Vehicle Localization. Journal of Industrial Engineering and Applied Science, 2(1), 27-31.
Dai, J., Dai, S., Wang, J., Luo, Z., & Zhu, N. (2024). On the Current Status and Trends of Short Video Self Media Development in the 5G Era. Academic Journal of Sociology and Management, 2(2), 5-9.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Xiaosong Wang, Yuxin Qiao, Jize Xiong, Zhiming Zhao, Ning Zhang, Mingyang Feng, Chufeng Jiang
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.