Enhancing E-commerce Chatbots with Falcon-7B and 16-bit Full Quantization

Authors

  • Yang Luo Computer Science, China CITIC Bank Software Development Center, Beijing, China
  • Zibu Wei Computer Science, University of California, Los Angeles, Los Angeles, USA
  • Guokun Xu Computer Science, Beijing Foreign Studies University, Beijing, China
  • Zhengning Li Computer Science, Georgetown University, Washington, D.C. USA
  • Ying Xie Computer Science, San Francisco Bay University, Fremont, USA
  • Yibo Yin Computer Science, Contemporary Amperex Technology USA Inc, Auburn Hills, USA

DOI:

https://doi.org/10.53469/jtpes.2024.04(02).08

Keywords:

E-commerce Chatbot, Large Language Models (LLM), Falcon-7B

Abstract

E-commerce chatbots play a crucial role in customer service but often struggle with understanding complex queries. This study introduces a breakthrough approach leveraging the Falcon-7B model, a state-of-the-art Large Language Model (LLM) with 7 billion parameters. Trained on a vast dataset of 1,500 billion tokens from RefinedWeb and curated corpora, the Falcon-7B model excels in natural language understanding and generation. Notably, its 16-bit full quantization transformer ensures efficient computation without compromising scalability or performance. By harnessing cutting-edge machine learning techniques, our method aims to redefine e-commerce chatbot systems, providing businesses with a robust solution for delivering personalized customer experiences.

References

Gupta, S., Borkar, D., De Mello, C., & Patil, S. (2015). An e-commerce website based chatbot. International Journal of Computer Science and Information Technologies, 6(2), 1483-1485.

Cui, L., Huang, S., Wei, F., Tan, C., Duan, C., & Zhou, M. (2017, July). Superagent: A customer service chatbot for e-commerce websites. In Proceedings of ACL 2017, system demonstrations (pp. 97-102).

Asadi, A. R., & Hemadi, R. (2018). Design and implementation of a chatbot for e-commerce. Information Communication Technology and Doing Business, 1-10.

Nursetyo, A., & Subhiyakto, E. R. (2018, November). Smart chatbot system for E-commerce assitance based on AIML. In 2018 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI) (pp. 641-645). IEEE.

Chen, J., Zhang, X., Wu, Y., Ghosh, S., Natarajan, P., Chang, S. F., & Allebach, J. (2022). One-stage object referring with gaze estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 5021-5030).

Oguntosin, V., & Olomo, A. (2021). Development of an e-commerce chatbot for a university shopping mall. Applied Computational Intelligence and Soft Computing, 2021, 1-14.

Rakhra, M., Gopinadh, G., Addepalli, N. S., Singh, G., Aliraja, S., Reddy, V. S. G., & Reddy, M. N. (2021, April). E-commerce assistance with a smart chatbot using artificial intelligence. In 2021 2nd International Conference on Intelligent Engineering and Management (ICIEM) (pp. 144-148). IEEE.

Mamatha, M. (2021). Chatbot for E-Commerce Assistance: based on RASA. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(11), 6173-6179.

Chen, J., Lin, Q., & Allebach, J. P. (2020). Deep learning for printed mottle defect grading. Electronic Imaging, 2020(8), 184-1.

Zafar, M. (2023). Developing Smart Conversation Agent ECOM-BOT for Ecommerce Applications using Deep Learning and Pattern Matching. International Journal of Information Engineering and Electronic Business, 13(2), 1.

Alizadeh, K., Mirzadeh, I., Belenko, D., Khatamifard, K., Cho, M., Del Mundo, C. C., ... & Farajtabar, M. (2023). Llm in a flash: Efficient large language model inference with limited memory. arXiv preprint arXiv:2312.11514.

Yang, J., Shen, X., Xing, J., Tian, X., Li, H., Deng, B., ... & Hua, X. S. (2019). Quantization networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 7308-7316).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.

Zhang, L., Howard, S., Montpool, T., Moore, J., Mahajan, K., & Miranskyy, A. (2023). Automated data validation: An industrial experience report. Journal of Systems and Software, 197, 111573.

Sun, Z., Dhital, A., Areejitkasem, N., Pradhan, N., & Banic, A. (2014, August). Effects on performance of analytical tools for visually demanding tasks through direct and indirect touch interaction in an immersive visualization. In 2014 International Conference on Virtual Reality and Visualization (pp. 186-193). IEEE.

Su, J., Nair, S., & Popokh, L. (2023, February). EdgeGym: A Reinforcement Learning Environment for Constraint-Aware NFV Resource Allocation. In 2023 IEEE 2nd International Conference on AI in Cybersecurity (ICAIC) (pp. 1-7). IEEE.

Xiong, J., Feng, M., Wang, X., Jiang, C., Zhang, N., & Zhao, Z. (2024). Decoding sentiments: Enhancing covid-19 tweet analysis through bert-rcnn fusion. Journal of Theory and Practice of Engineering Science, 4(01), 86-93.

Liu, S., Wu, K., Jiang, C., Huang, B., & Ma, D. (2023). Financial time-series forecasting: Towards synergizing performance and interpretability within a hybrid machine learning approach. arXiv preprint arXiv:2401.00534.

Liu, T., Xu, C., Qiao, Y., Jiang, C., & Chen, W. (2024). News recommendation with attention mechanism. arXiv preprint arXiv:2402.07422.

Popokh, L., Su, J., Nair, S., & Olinick, E. (2021, September). IllumiCore: Optimization Modeling and Implementation for Efficient VNF Placement. In 2021 International Conference on Software, Telecommunications and Computer Networks (SoftCOM) (pp. 1-7). IEEE.

Liao, J., Kot, A., Guha, T., & Sanchez, V. (2020, October). Attention selective network for face synthesis and pose-invariant face recognition. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 748-752). IEEE.

Sun, Z., Zhang, H., Liu, Z., Xu, C., & Wang, L. (2016, June). Migrating GIS big data computing from Hadoop to Spark: an exemplary study Using Twitter. In 2016 IEEE 9th International Conference on Cloud Computing (CLOUD) (pp. 351-358). IEEE.

Zhang, L., Radnejad, M., & Miranskyy, A. (2023). Identifying Flakiness in Quantum Programs. arXiv preprint arXiv:2302.03256.

Zhang, P., Sun, Z., Kyung, S., Behrens, H. W., Basque, Z. L., Cho, H., ... & Doupé, A. (2022, November). I'm SPARTACUS, No, I'm SPARTACUS: Proactively Protecting Users from Phishing by Intentionally Triggering Cloaking Behavior. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security (pp. 3165-3179).

Sun, Z., Oest, A., Zhang, P., Rubio-Medrano, C., Bao, T., Wang, R., ... & Zhang, Y. (2021). Having Your Cake and Eating It: An Analysis of {Concession-Abuse-as-a-Service}. In 30th USENIX Security Symposium (USENIX Security 21) (pp. 4169-4186).

Liu, T., Xu, C., Qiao, Y., Jiang, C., & Yu, J. (2024). Particle Filter SLAM for Vehicle Localization. arXiv preprint arXiv:2402.07429.

Su, J., Nair, S., & Popokh, L. (2022, November). Optimal Resource Allocation in SDN/NFV-Enabled Networks via Deep Reinforcement Learning. In 2022 IEEE Ninth International Conference on Communications and Networking (ComNet) (pp. 1-7). IEEE.

Sun, Z., Rubio-Medrano, C. E., Zhao, Z., Bao, T., Doupé, A., & Ahn, G. J. (2019, March). Understanding and predicting private interactions in underground forums. In Proceedings of the Ninth ACM Conference on Data and Application Security and Privacy (pp. 303-314).

Liu, Y., Yang, H., & Wu, C. (2023). Unveiling patterns: A study on semi-supervised classification of strip surface defects. IEEE Access, 11, 119933-119946.

Su, J., Jiang, C., Jin, X., Qiao, Y., Xiao, T., Ma, H., ... & Lin, J. (2024). Large Language Models for Forecasting and Anomaly Detection: A Systematic Literature Review. arXiv preprint arXiv:2402.10350.

Duan, Y., Fu, G., Zhou, N., Sun, X., Narendra, N. C., & Hu, B. (2015, June). Everything as a service (XaaS) on the cloud: origins, current and future trends. In 2015 IEEE 8th International Conference on Cloud Computing (pp. 621-628). IEEE.

Zhang, L., & Down, D. G. (2019). APEM—Approximate Performance Evaluation for Multi-Core Computers. Journal of Circuits, Systems and Computers, 28(01), 1950004.

Pourmajidi, W., Zhang, L., Steinbacher, J., Erwin, T., & Miranskyy, A. (2021). Immutable log storage as a service on private and public blockchains. IEEE Transactions on Services Computing.

Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002, July). Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association for Computational Linguistics (pp. 311-318).

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI blog, 1(8), 9.

Downloads

Published

2024-02-28

How to Cite

Luo, Y., Wei, Z., Xu, G., Li, Z., Xie, Y., & Yin, Y. (2024). Enhancing E-commerce Chatbots with Falcon-7B and 16-bit Full Quantization. Journal of Theory and Practice of Engineering Science, 4(02), 52–57. https://doi.org/10.53469/jtpes.2024.04(02).08