Enhancing E-commerce Recommendations: Unveiling Insights from Customer Reviews with BERTFusionDNN
DOI:
https://doi.org/10.53469/jtpes.2024.04(02).06Keywords:
E-commerce, Recommendation System, BERTFusionDNNAbstract
In the domain of e-commerce, customer reviews wield significant influence over business strategies. Despite the existence of various recommendation methodologies like collaborative filtering and deep learning, they often encounter difficulties in accurately analyzing sentiment and semantics within customer feedback. Addressing these challenges head-on, this paper introduces BERTFusionDNN, a novel framework merging BERT for extracting textual features and a Deep Neural Network for integrating numerical features. We assess the efficacy of our approach using a Women Clothing E-Commerce dataset, benchmarking it against established techniques. Our method adeptly extracts valuable insights from customer reviews, fortifying e-commerce recommendation systems by surmounting barriers associated with deciphering both textual nuances and numerical intricacies. Through this endeavor, we pave the way for more robust and effective strategies in leveraging customer feedback to optimize e-commerce experiences and drive business success.
References
Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000, October). Analysis of recommendation algorithms for e-commerce. In Proceedings of the 2nd ACM Conference on Electronic Commerce (pp. 158-167).
Schafer, J. B., Konstan, J. A., & Riedl, J. (2001). E-commerce recommendation applications. Data mining and knowledge discovery, 5, 115-153.
Li, Y., Lu, L., & Xuefeng, L. (2005). A hybrid collaborative filtering method for multiple-interests and multiple-content recommendation in E-Commerce. Expert systems with applications, 28(1), 67-77.
Huang, Z., Zeng, D., & Chen, H. (2007). A comparative study of recommendation algorithms in e-commerce applications. IEEE Intelligent Systems, 22(5), 68-78.
Zhang, L., Howard, S., Montpool, T., Moore, J., Mahajan, K., & Miranskyy, A. (2023). Automated data validation: An industrial experience report. Journal of Systems and Software, 197, 111573.
Chen, J., Zhang, X., Wu, Y., Ghosh, S., Natarajan, P., Chang, S. F., & Allebach, J. (2022). One-stage object referring with gaze estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 5021-5030).
Bahabadi, M. D., Golpayegani, A. H., & Esmaeili, L. (2014). A novel C2C e-commerce recommender system based on link prediction: applying social network analysis. arXiv preprint arXiv:1407.8365.
Zhang, Z., Xu, G., & Zhang, P. (2016). Research on E-commerce platform-based personalized recommendation algorithm. Applied computational intelligence and soft computing, 2016.
Gosh, S., Nahar, N., Wahab, M. A., Biswas, M., Hossain, M. S., & Andersson, K. (2020, December). Recommendation system for e-commerce using alternating least squares (ALS) on apache spark. In International Conference on Intelligent Computing & Optimization (pp. 880-893). Cham: Springer International Publishing.
Chen, J., Lin, Q., & Allebach, J. P. (2020). Deep learning for printed mottle defect grading. Electronic Imaging, 2020(8), 184-1.
Ji, H., Zhu, J., Wang, X., Shi, C., Wang, B., Tan, X., ... & He, S. (2021, May). Who you would like to share with? A study of share recommendation in social e-commerce. In Proceedings of the AAAI conference on artificial intelligence (Vol. 35, No. 1, pp. 232-239).
Nasir, M., & Ezeife, C. I. (2023). Semantic enhanced Markov model for sequential E-commerce product recommendation. International Journal of Data Science and Analytics, 15(1), 67-91.
Latha, Y. M., & Rao, B. S. (2023). Product recommendation using enhanced convolutional neural network for e-commerce platform. Cluster Computing, 1-15.
Sun, Z., Dhital, A., Areejitkasem, N., Pradhan, N., & Banic, A. (2014, August). Effects on performance of analytical tools for visually demanding tasks through direct and indirect touch interaction in an immersive visualization. In 2014 International Conference on Virtual Reality and Visualization (pp. 186-193). IEEE.
Su, J., Nair, S., & Popokh, L. (2023, February). EdgeGym: A Reinforcement Learning Environment for Constraint-Aware NFV Resource Allocation. In 2023 IEEE 2nd International Conference on AI in Cybersecurity (ICAIC) (pp. 1-7). IEEE.
Jin, X., Manandhar, S., Kafle, K., Lin, Z., & Nadkarni, A. (2022, November). Understanding iot security from a market-scale perspective. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security (pp. 1615-1629).
Xiong, J., Feng, M., Wang, X., Jiang, C., Zhang, N., & Zhao, Z. (2024). Decoding sentiments: Enhancing covid-19 tweet analysis through bert-rcnn fusion. Journal of Theory and Practice of Engineering Science, 4(01), 86-93.
Liu, S., Wu, K., Jiang, C., Huang, B., & Ma, D. (2023). Financial time-series forecasting: Towards synergizing performance and interpretability within a hybrid machine learning approach. arXiv preprint arXiv:2401.00534.
Wang, X., Xiao, T., Tan, J., Ouyang, D., & Shao, J. (2020). MRMRP: multi-source review-based model for rating prediction. In Database Systems for Advanced Applications: 25th International Conference, DASFAA 2020, Jeju, South Korea, September 24–27, 2020, Proceedings, Part II 25 (pp. 20-35). Springer International Publishing.
Liu, T., Xu, C., Qiao, Y., Jiang, C., & Chen, W. (2024). News recommendation with attention mechanism. arXiv preprint arXiv:2402.07422.
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
Cheng, H. T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., ... & Shah, H. (2016, September). Wide & deep learning for recommender systems. In Proceedings of the 1st workshop on deep learning for recommender systems (pp. 7-10).
Xiao, T., Zeng, L., Shi, X., Zhu, X., & Wu, G. (2022, September). Dual-Graph Learning Convolutional Networks for Interpretable Alzheimer’s Disease Diagnosis. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 406-415). Cham: Springer Nature Switzerland.
Popokh, L., Su, J., Nair, S., & Olinick, E. (2021, September). IllumiCore: Optimization Modeling and Implementation for Efficient VNF Placement. In 2021 International Conference on Software, Telecommunications and Computer Networks (SoftCOM) (pp. 1-7). IEEE.
Liao, J., Kot, A., Guha, T., & Sanchez, V. (2020, October). Attention selective network for face synthesis and pose-invariant face recognition. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 748-752). IEEE.
Sun, Z., Zhang, H., Liu, Z., Xu, C., & Wang, L. (2016, June). Migrating GIS big data computing from Hadoop to Spark: an exemplary study Using Twitter. In 2016 IEEE 9th International Conference on Cloud Computing (CLOUD) (pp. 351-358). IEEE.
Zhang, L., Radnejad, M., & Miranskyy, A. (2023). Identifying Flakiness in Quantum Programs. arXiv preprint arXiv:2302.03256.
Sun, Z. (2022). In the Light and in the Shadows: Human-Centered Analysis in Cybercrime. Arizona State University.
Zhang, P., Sun, Z., Kyung, S., Behrens, H. W., Basque, Z. L., Cho, H., ... & Doupé, A. (2022, November). I'm SPARTACUS, No, I'm SPARTACUS: Proactively Protecting Users from Phishing by Intentionally Triggering Cloaking Behavior. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security (pp. 3165-3179).
Sun, Z., Oest, A., Zhang, P., Rubio-Medrano, C., Bao, T., Wang, R., ... & Zhang, Y. (2021). Having Your Cake and Eating It: An Analysis of {Concession-Abuse-as-a-Service}. In 30th USENIX Security Symposium (USENIX Security 21) (pp. 4169-4186).
Liu, T., Xu, C., Qiao, Y., Jiang, C., & Yu, J. (2024). Particle Filter SLAM for Vehicle Localization. arXiv preprint arXiv:2402.07429.
Su, J., Nair, S., & Popokh, L. (2022, November). Optimal Resource Allocation in SDN/NFV-Enabled Networks via Deep Reinforcement Learning. In 2022 IEEE Ninth International Conference on Communications and Networking (ComNet) (pp. 1-7). IEEE.
Hu, J., Wang, N., Yang, B., Chen, G., Guo, X., & Wang, B. (2023). S3DS: Self-supervised Learning of 3D Skeletons from Single View Images. Proceedings of the 31st ACM International Conference on Multimedia, 6948–6958.
Sun, Z., Rubio-Medrano, C. E., Zhao, Z., Bao, T., Doupé, A., & Ahn, G. J. (2019, March). Understanding and predicting private interactions in underground forums. In Proceedings of the Ninth ACM Conference on Data and Application Security and Privacy (pp. 303-314).
Liu, Y., Yang, H., & Wu, C. (2023). Unveiling Patterns: A Study on Semi-Supervised Classification of Strip Surface Defects. IEEE Access, 11, 119933-119946.
Liao, J., Sanchez, V., & Guha, T. (2022, October). Self-Supervised Frontalization and Rotation Gan with Random Swap for Pose-Invariant Face Recognition. In 2022 IEEE International Conference on Image Processing (ICIP) (pp. 911-915). IEEE.
Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training.
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI blog, 1(8), 9.
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. Advances in neural information processing systems, 33, 1877-1901.
Su, J., Jiang, C., Jin, X., Qiao, Y., Xiao, T., Ma, H., ... & Lin, J. (2024). Large Language Models for Forecasting and Anomaly Detection: A Systematic Literature Review. arXiv preprint arXiv:2402.10350.
Jordan, M. I. (1997). Serial order: A parallel distributed processing approach. In Advances in psychology (Vol. 121, pp. 471-495). North-Holland.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.
Zhang, H., Sun, Z., Liu, Z., Xu, C., & Wang, L. (2015, June). Dart: A geographic information system on hadoop. In 2015 IEEE 8th International Conference on Cloud Computing (pp. 90-97). IEEE.
Zhang, L., & Down, D. G. (2019). APEM—Approximate Performance Evaluation for Multi-Core Computers. Journal of Circuits, Systems and Computers, 28(01), 1950004.
Pourmajidi, W., Zhang, L., Steinbacher, J., Erwin, T., & Miranskyy, A. (2021). Immutable log storage as a service on private and public blockchains. IEEE Transactions on Services Computing.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Zhiming Zhao, Ning Zhang, Jize Xiong, Mingyang Feng, Chufeng Jiang, Xiaosong Wang
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.