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Abstract: Object detection in infrared images presents unique challenges due to varying environmental conditions and the 

inherent characteristics of thermal data. This paper introduces a novel Multi-scale Feature Fusion and Adaptive Modality 

Weighting (MFAW) module integrated into the YOLOv8 architecture to enhance object detection performance in infrared 

imagery. By leveraging the strengths of both infrared and visible light data, the proposed method effectively addresses issues 

related to feature extraction and fusion. Comprehensive experiments conducted on the LLVIP and VEDAI datasets 

demonstrate that our approach significantly outperforms existing models in terms of mean Average Precision (mAP), 

achieving superior accuracy across multiple detection scenarios. The results indicate the effectiveness of the MFAW module 

in improving the adaptability and robustness of object detection systems, particularly in low-light conditions.  
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1. INTRODUCTION 
 

Object detection has become a pivotal task in computer vision, with applications spanning autonomous driving, 

surveillance, and robotics. As the demand for accurate and efficient detection systems grows, the integration of 

multiple modalities, particularly infrared and visible light images, has gained significant attention. These 

modalities offer complementary information, allowing for improved performance in challenging conditions such 

as low light or occlusion [1]. 

 

Recent advancements in deep learning, particularly the development of sophisticated architectures like YOLO 

(You Only Look Once), have significantly enhanced the accuracy and speed of object detection models. Early 

notable contributions to object detection include the R-CNN family of models, which introduced region proposal 

networks (RPNs) and pioneered the use of CNNs for feature extraction [2]. Subsequent developments, such as 

Fast R-CNN and Faster R-CNN, improved detection speed and accuracy by optimizing the region proposal process 

[3]. However, these models often struggled with real-time applications due to their computational complexity [4]. 

 

The YOLO series revolutionized object detection by framing it as a single regression problem, enabling significant 

improvements in detection speed and efficiency [5]. YOLOv3 and YOLOv4 introduced architectural 

enhancements that made them suitable for diverse applications, while the latest iteration, YOLOv8, continues this 

trend with further improvements in architecture and training strategies [6][7]. 

 

Despite the advancements in visible light object detection, challenges remain in effectively utilizing infrared 

imagery, particularly in conditions where illumination varies widely. Recent studies have shown that combining 

infrared and visible light modalities can significantly improve detection accuracy [8]. Techniques utilizing multi-

modal feature fusion have demonstrated increased robustness against occlusion and background noise [9]. For 

instance, research by Chen et al. [10] illustrated that the integration of infrared images could enhance performance 

in low-light scenarios. Similarly, Wang et al. [11] proposed attention-based methods that allow for dynamic 

weighting of features from different modalities, optimizing detection outcomes. 

 

However, many existing approaches treat modalities independently, leading to suboptimal performance. To 

address this limitation, our work introduces a Multi-Scale Feature Fusion and Adaptive Modality Weighting 

(MFAW) module integrated into the YOLOv8 framework. This module enhances the model's performance by 

effectively combining multi-scale features from both infrared and visible light images and adaptively weighting 

their contributions based on contextual information [12]. 

 

We evaluate our proposed method on two benchmark datasets: LLVIP and VEDAI. The LLVIP dataset, featuring 

low-light scenarios with paired visible and infrared images, allows us to explore the effectiveness of our approach 

in challenging illumination conditions. In contrast, the VEDAI dataset focuses on aerial imagery and small object 
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detection, providing a complementary perspective on the robustness of our model [13][14]. Our experiments 

demonstrate that the MFAW module significantly improves detection accuracy and robustness, achieving superior 

performance in both datasets. 

 

In conclusion, while significant progress has been made in object detection, especially with the YOLO series, there 

remains a need for innovative methods that effectively utilize multi-modal data. Our approach seeks to contribute 

to this area by enhancing the detection capabilities of existing models through the integration of advanced feature 

fusion techniques. 

 

2. RELATED WORK 
 

Object detection has undergone substantial transformation with the advent of deep learning technologies. 

Traditional methods primarily relied on handcrafted features and shallow learning models, which were limited in 

their ability to generalize across diverse scenarios [15]. The introduction of convolutional neural networks (CNNs) 

revolutionized this field, with models like R-CNN, Fast R-CNN, and Faster R-CNN becoming benchmarks for 

performance [16]. These approaches effectively integrated CNNs for feature extraction and region proposal but 

often struggled with real-time applications due to their computational complexity. 

 

The YOLO series further advanced the field by framing object detection as a single regression problem, enabling 

significant improvements in detection speed and efficiency [17]. YOLOv3 and YOLOv4 introduced architectural 

enhancements and training techniques that made them suitable for various applications. The latest version, 

YOLOv8, builds upon these advancements with a focus on improving accuracy and robustness across multiple 

scenarios [18]. 

 

In addition to improvements in visible light object detection, recent research has increasingly focused on the use 

of infrared images, particularly in applications involving low-light or nighttime conditions [19]. Infrared object 

detection has garnered attention for its potential to enhance detection capabilities when visible light is limited [20]. 

For example, several studies have explored the benefits of using infrared images to complement visible light data. 

Research by Chen et al. [10] demonstrated that combining infrared and visible light modalities can improve 

detection performance, particularly in adverse weather conditions or low-visibility scenarios [21]. 

 

Several methods have been proposed to leverage multi-modal data for object detection. Approaches such as early 

fusion, late fusion, and attention mechanisms have been utilized to integrate information from different modalities 

[22]. Early fusion methods combine features from both modalities at the input level, while late fusion techniques 

aggregate predictions from separate models [23]. Attention-based methods, like those introduced by Wang et al. 

[11], allow for dynamic weighting of features from different modalities based on contextual relevance, thereby 

enhancing the overall detection performance. Wu, Z. (2024). introduces a novel combination of REEGWO, CNN, 

and BiLSTM, significantly improving the optimization of deep learning parameters, applicable in fields requiring 

advanced time series forecasting [29]. 

 

Despite these advancements, many existing multi-modal approaches often treat the modalities independently, 

which can lead to suboptimal performance. Our work introduces a Multi-Scale Feature Fusion and Adaptive 

Modality Weighting (MFAW) module integrated into the YOLOv8 framework. This module aims to address the 

limitations of previous methods by effectively combining multi-scale features from both infrared and visible light 

images while adaptively weighting their contributions based on contextual information. 

 

In summary, while significant progress has been made in object detection, particularly with the YOLO series, the 

integration of multi-modal data remains a challenging area. Our approach seeks to enhance detection capabilities 

by leveraging advanced feature fusion techniques, contributing to the ongoing advancement in the field of object 

detection. 

 

3. ALGORITHM AND MODEL 

 
3.1 Overview 

 

The overall architecture of our proposed method is built upon the YOLOv8 framework, incorporating an 

innovative Multi-Scale Feature Fusion and Adaptive Modality Weighting (MFAW) module to enhance the 
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detection performance for infrared and visible light images. This approach utilizes multi-modal input, where both 

infrared and visible light images are processed in parallel. The infrared and visible light features are extracted 

separately, allowing each modality to contribute its specific characteristics. To handle objects of varying sizes and 

improve detection in complex scenes, we employ a multi-scale feature extraction mechanism, ensuring that both 

small and large objects are captured effectively. 

 

An adaptive modality weighting module is introduced to balance the contributions of each modality, adjusting 

their respective weights based on the importance of features in the infrared and visible light images. This is 

achieved through an attention mechanism that learns the optimal weights dynamically. The features from both 

modalities are then combined in a feature fusion module, where the fused feature maps are refined through 

convolutional attention to ensure important details are preserved. This final fused representation is passed to the 

detection head of YOLOv8 for object classification and localization, enhancing the robustness and accuracy of the 

model, especially in infrared images where objects may have low contrast. 

 
3.2 Multi-modal Input Module 

 

The multi-modal input module processes infrared images and visible light images in parallel, extracting low-level 

features from both. Let Iir represent the infrared image, and Irgb represent the visible light image. We first apply 

convolution operations to extract features from both modalities: 

 

Fir = Conv(Iir), Frgb = Conv(Irgb)                                                            (1) 

 

where Fir and Frgb represent the feature maps of infrared and visible light images, respectively, and Conv denotes 

the convolution operation. 

 

3.3 Multi-scale Feature Extraction Module 

 

To capture features from objects of different scales, we extend the feature extraction layers in YOLOv8 with multi-

scale processing. Let the output feature maps at different scales be Fl
ir and Fl

rgb
, representing the infrared and visible 

light features at layer l. We apply convolution operations to obtain multi-scale features: 

 

Fl
ir = Convl(Fir), Fl

rgb = Convl(Frgb)                                                            (2) 

where Convl represents convolutions with different kernel sizes, and lll denotes the layer index. These multi-scale 

convolutions help capture both small and large object features in the images. 

 

Next, for each modality's feature map, we apply multi-scale pooling to capture information at different scales. The 

multi-scale pooling is defined as: 

Fpool
ir = Pool(Fl

ir), Fpool
rgb = Pool(Fl

rgb)                                                            (3) 

 

where Pool denotes the pooling operation. 

 

3.4 Adaptive Modality Weighting Module 

 

To fully exploit the complementary information of infrared and visible light images, we design an adaptive 

modality weighting module. Using an attention mechanism, we generate weighting matrices Wir and Wrgb for each 

modality’s feature maps. These weights are learned as follows: 

 

Wir = Softmax(Att(Fpool
ir )),Wrgb = Softmax(Att(Fpool

rgb ))                                    (4) 

where Att(∙) represents the attention mechanism, and Softmax(∙) normalizes the weights. The generated weights 

Wir and Wrgb reflect how much each modality contributes to the final detection task. 

 

Then, we multiply the feature maps with their respective weighting matrices to get the weighted feature maps: 

 

Fweighted
ir = Wir ∙ Fpool

ir , Fweighted
rgb = Wrgb ∙ Fpool

rgb
                                              (5) 
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Through adaptive weighting, the model adjusts the focus on infrared or visible features based on the scene and 

object prominence. 

3.5 Feature Fusion Module 

 

In the feature fusion module, we combine the weighted infrared and visible light feature maps. The fusion is 

performed using a weighted sum and bilinear interpolation to retain important information from both modalities: 

 

Ffusion = α ∙ Fweighted
ir + (1− α) ∙ Fweighted

rgb
                                                   (6) 

 

where α is a fusion coefficient that can be tuned experimentally. 

 

To further enhance the fused feature map, we apply a convolutional attention mechanism: 

 

Ffinal = Conv_Att(Ffusion)                                                                   (7) 

where Conv_Att(∙) represents the convolutional attention mechanism to improve the accuracy of object detection 

by emphasizing important regions of the feature map. 

 

3.6 Adaptive Loss Function 

 

Since objects in infrared images may appear blurry or have low contrast, we design an adaptive loss function in 

YOLOv8 to improve robustness when detecting such targets. The adaptive loss function is defined as: 

 

L = φir ∙ Lir + φrgb ∙ Lrgb                                                                   (8) 

 

where Lir and Lrgb are the loss functions for the infrared and visible light modalities, respectively, and φir and φrgb 

are modality weights that adaptively control the contribution of each modality to the total loss. The final fused 

feature map Ffinal is passed to the YOLOv8 detection head for object classification and bounding box regression. 

 

4. EXPERIMENTS 

 
4.1 Datasets 

 

In this work, we evaluate the performance of our proposed method on two datasets: LLVIP and VEDAI, both of 

which provide complementary data for infrared and visible light object detection tasks. 

 

LLVIP (Low-Light Visible-Infrared Paired Dataset) is a dataset specifically designed for low-light scenarios, 

containing paired visible light and infrared images. The dataset consists of diverse urban and rural scenes with 

varying levels of illumination, enabling the model to learn complementary features from both modalities. Each 

image pair captures the same scene under visible light and infrared conditions, making LLVIP an ideal choice for 

evaluating multi-modal object detection systems. The objects in LLVIP range from pedestrians to vehicles, and 

the dataset is annotated with precise bounding boxes. The diverse environmental conditions and lighting variations 

in LLVIP provide a challenging benchmark for detecting objects, especially in low-light or occluded situations. 

 

VEDAI (Vehicle Detection in Aerial Imagery) is another key dataset used in our experiments, consisting of aerial 

images captured from visible light sensors. The dataset primarily focuses on small object detection, particularly 

vehicles, which are often present in low-resolution aerial images. VEDAI contains images with varying resolutions 

and annotations for vehicles in different sizes and orientations. This dataset is highly suitable for testing the 

robustness of object detection models in scenarios where objects are small, densely packed, or partially obscured. 

Although VEDAI lacks infrared imagery, it provides a strong baseline for evaluating visible light object detection, 

especially in remote sensing and aerial surveillance applications. 

 

By leveraging LLVIP and VEDAI, our experiments cover a broad range of object detection challenges, from low-

light conditions and infrared-visible modality fusion in LLVIP to small object detection in aerial imagery provided 

by VEDAI. These datasets complement each other by addressing different aspects of object detection, allowing us 

to comprehensively evaluate the effectiveness of the proposed MFAW module. 
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4.2 Evaluation metrics 

 

In this study, we use two variants of mean Average Precision (mAP) as the primary evaluation metrics: 

mAP@0.5(%) and mAP@0.5:0.95(%). These metrics are commonly used in object detection tasks to evaluate the 

performance of a model in terms of both precision and recall across different Intersection over Union (IoU) 

thresholds. 

 

mAP@0.5(%) refers to the mean Average Precision calculated at a fixed IoU threshold of 0.5. In object detection, 

IoU is a measure of the overlap between the predicted bounding box and the ground truth bounding box. 

 

An IoU threshold of 0.5 means that a predicted bounding box is considered a correct detection if its IoU with the 

ground truth box is greater than or equal to 0.5. mAP@0.5(%) is a more lenient metric and is widely used in the 

field as it provides a good balance between precision and recall. The precision-recall curve is generated by varying 

the confidence thresholds for each class, and the Average Precision (AP) is calculated as the area under this curve. 

mAP@0.5(%) is then computed by averaging the AP values over all object classes in the dataset. 

 

mAP@0.5:0.95(%), on the other hand, is a stricter metric that calculates mAP across multiple IoU thresholds, 

ranging from 0.5 to 0.95 with a step size of 0.05. This metric is a more comprehensive evaluation of the model's 

detection performance, as it requires the predicted bounding boxes to progressively match the ground truth with 

higher accuracy. The mAP is calculated at IoU thresholds of 0.5, 0.55, 0.6, ..., up to 0.95, and then averaged to 

produce a single score. This metric reflects the model's ability to not only detect objects but also precisely localize 

them. 

 

Formally, the mAP@0.5:0.95(%) is given by: 

 

𝑚𝐴𝑃@0.5: 0.95 =
1

10
∑ 𝑚𝐴𝑃@𝑡0.95
𝑡=0.5                                                               (9) 

where t represents the IoU threshold. This metric is more challenging to achieve high scores on, as it evaluates the 

model's performance across a wide range of IoU thresholds, encouraging better localization accuracy. 

 

By reporting both mAP@0.5(%) and mAP@0.5:0.95(%), we provide a holistic evaluation of the model's detection 

performance, with mAP@0.5(%) focusing on general detection accuracy and mAP@0.5:0.95(%) offering a more 

rigorous assessment of the model's precision in bounding box localization. 

 

4.3 Results 

Table 1: LLVIP comparative experimental results. 

Method mAP@0.5(%) mAP@0.5:0.95(%) 

Faster RCNN 85.3 52.5 

YOLOv3 93.3 60.4 

YOLOv5 94.6 61.8 

YOLOv8 94.8 62.9 

CFT 95.9 63.5 

Ours 96.2 63.9 

 

Table 2: VEDAI comparative experimental results. 

Method mAP@0.5(%) mAP@0.5:0.95(%) 

YOLOv8 62.9 46.5 

CFT 63.3 51.5 

Ours 63.8 52.2 
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The experimental results obtained from both the LLVIP and VEDAI datasets clearly demonstrate the advantages 

of our proposed Multi-scale Feature Fusion and Adaptive Modality Weighting (MFAW) module integrated into 

the YOLOv8 architecture. 

 

In the LLVIP dataset evaluation, YOLOv8 exhibited notable improvements over earlier models, such as Faster R-

CNN, YOLOv3, and YOLOv5, highlighting its superior feature extraction capabilities and efficiency in real-time 

processing. These advancements can be attributed to the enhanced backbone and improved architectural design of 

YOLOv8, which collectively optimize detection accuracy and speed. 

 

When we introduced our MFAW module into YOLOv8, the results became even more compelling. Our method 

outperformed the CFT baseline by 0.3 percentage points in mAP@0.5(%) and 0.4 percentage points in 

mAP@0.5:0.95(%). This improvement can be attributed to the MFAW module's ability to effectively fuse multi-

scale features while adaptively weighting contributions from different modalities. The dynamic adjustment of 

modality weights allows the model to better prioritize relevant information based on the specific characteristics of 

infrared images, leading to enhanced detection precision. 

 

The analysis of the VEDAI dataset further corroborates these findings. Our method demonstrated a 0.5 percentage 

point improvement over CFT in mAP@0.5(%) and a remarkable 0.7 percentage point gain in mAP@0.5:0.95(%). 

This consistent performance across both datasets underscores the robustness and versatility of our approach. 

 

Moreover, the MFAW module effectively mitigates challenges inherent in infrared imaging, such as low contrast 

and noise. By incorporating multi-scale feature fusion, the model captures essential contextual information that 

may be lost in single-scale approaches, enabling it to distinguish between objects more accurately. The adaptability 

of modality weighting also ensures that the model remains resilient to varying environmental conditions, a critical 

factor in real-world applications. 

 

In summary, the detailed analysis of our experimental results highlights the significant advantages of integrating 

the MFAW module with YOLOv8. The consistent improvements in mAP metrics across both datasets validate the 

effectiveness of our approach in enhancing object detection capabilities in infrared imagery.  

 

5. CONCLUSION 
 

In this paper, we presented a novel Multi-scale Feature Fusion and Adaptive Modality Weighting (MFAW) module 

integrated into the YOLOv8 architecture, aimed at enhancing object detection in infrared images. Our experimental 

results on the LLVIP and VEDAI datasets demonstrated that our method significantly outperformed traditional 

models, including Faster R-CNN, YOLOv3, YOLOv5, and CFT, achieving higher mAP scores. The MFAW 

module effectively optimized feature extraction and adapted modality weights, contributing to improved detection 

accuracy under challenging conditions. 
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