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Abstract: The detection and classification of programming languages and file formats are crucial in a variety of contexts, 

such as software analysis, code management, and cybersecurity. Despite significant research efforts, existing methods often 

struggle with the diversity and complexity of modern programming environments. This paper addresses these challenges by 

proposing a novel approach utilizing a BERT-based multi-class classification model to accurately classify input text into 

one of 21 programming languages. Our method leverages BERT’s advanced natural language processing capabilities to 

capture the intricate syntactic and semantic patterns of different programming languages, thereby enhancing detection 

accuracy and flexibility. We provide a comprehensive review of related work, highlighting existing approaches that include 

feature-based methods, structural and content-based techniques, and deep learning applications. While these methods have 

achieved notable success, they frequently lack generalizability and adaptability to new and evolving file types and languages. 

Our proposed BERT-based model addresses these limitations by offering a scalable and robust solution for programming 

language classification, demonstrating superior performance across diverse datasets. This research contributes to the field 

by providing a more versatile and accurate framework for programming language and file format detection, applicable to 

various real-world scenarios. 

 

Keywords: Programming Language Classification; Multi-class Classification; Bidirectional Encoder Representations from 

Transformers (BERT) 

 

1. INTRODUCTION 
 

The surge in digital content creation and the diversity of programming languages have intensified the demand for 

effective methods to identify and classify various file formats and languages. This need is particularly pronounced 

in environments such as GitHub repositories, where projects often include a mix of programming languages and 

file types. Accurate classification is crucial for a range of applications, including software analysis, code search, 

and intellectual property management. Traditional methods have struggled to keep up with the complexity of 

modern programming ecosystems, where languages like Python, JavaScript, and C co-exist with non-programming 

formats such as HTML and JSON. The ability to discern and categorize these diverse file types accurately is 

essential for effective data management and software development. 

 

Significant research has been devoted to the detection and classification of programming languages and file 

formats. A foundational classification system for visual programming languages was established in 1994 [1], 

influencing subsequent research in the field. In 2013, a feature-based approach was introduced for identifying file 

fragments, highlighting the importance of specific attributes in distinguishing file types [2]. A study in 2015 

demonstrated the efficacy of combining structural and content-based techniques to detect malicious PDF files, 

underscoring the benefits of a multi-layered analytical approach [3]. Research in 2018 showcased the potential of 

deep learning for format-agnostic detection of malicious web content, illustrating the versatility of neural networks 

[4]. A content-based classification system for digital documents was developed in 2019, enhancing the automation 

of file format identification [5]. Recent advancements in 2020 and 2021 applied machine learning to text file 

20

Selecting the Best Fit Software Programming

Languages: Using BERT for File Format

Detection

Jize Xiong1,#, Chufeng Jiang2,#, Zhiming Zhao3, Yuxin Qiao4, Ning Zhang5, Mingyang Feng6,

Xiaosong Wang7

1Computer Information Technology, Northern Arizona University, Flagstaff, USA
2Computer Science, The University of Texas at Austin, Fremont, USA

3Computer Science, East China University of Science and Technology, Shanghai, China
4Computer Information Technology, Northern Arizona University, Flagstaff, USA

5Computer Science, University of Birmingham, Dubai, United Arab Emirates
6Computer Information Technology, Northern Arizona University, Flagstaff, USA

7Computer Network Technology, Xuzhou University of Technology, Xuzhou, China
1jasonxiong824@gmail.com, 2chufeng.jiang@utexas.edu, 3zhiming817@gmail.com, 4yq83@nau.edu,

5nxz243@alumni.bham.ac.uk, 6zgjsntfmy@gmail.com, 7wang138125@gmail.com
#These authors contributed equally to this work

036).04(.024 20 es. tp /j 946 3510. I:  O D 



 

www.centuryscipub.com

JoJ uo ru nr an l aol f  Tofh  eT oh rye  aor ny d  aPrn ad c  tiP cr ea octfi Ec ne g  io nf eeE rn ingig n Se cie erincn eg     S   c  i   e   n   c   e      ISI SS NS :N  : 2  72 97 09 -0 1- 51 05 505

Journal of Theory and Practice of Engineering Science           ISSN: 2790-1513  
  
   

 

                       
Volume 4 Issue 5, 2024Volume 4 Issue 6, 2024

  

  
  

  

  
  

  

  

 

format identification and scalable content-based detection, respectively, pushing the boundaries of what can be 

achieved in this domain [6][7]. Despite these advancements, existing methods often lack generalizability across 

diverse file types and rely heavily on feature engineering  [8][9][10], which can limit adaptability to new languages 

and formats. 

 

To address the limitations of existing approaches, we propose a BERT-based multi-class classification model that 

aims to classify text into one of 21 programming languages. BERT (Bidirectional Encoder Representations from 

Transformers) [20] is renowned for its ability to understand contextual information in text, making it well-suited 

for capturing the nuances of different programming languages. Our approach involves preprocessing the input text 

to extract relevant features, which are then fed into the BERT model. The model is trained to recognize the unique 

characteristics of each language, enabling it to distinguish accurately between them. By leveraging BERT's 

contextual understanding and implementing a multi-class classification framework, our method enhances the 

accuracy of language detection and offers scalability and flexibility in handling a wide range of programming 

environments. 

 

2. RELATED WORK 
 

In the domain of file format and programming language detection, foundational research has established various 

methodologies for effective classification. Burnett and Baker (1994) [1] introduced a comprehensive classification 

system for visual programming languages, providing valuable insights into organizing and understanding diverse 

programming paradigms. Amirani et al. (2013) [2] emphasized a feature-based approach for file fragment 

identification, highlighting the efficacy of recognizing specific attributes inherent to different file types. Similarly, 

Maiorca et al. (2015) [3] proposed a robust detection mechanism for malicious PDF files by integrating structural 

and content-based techniques, illustrating the benefits of multi-layered analysis. 

 

Recent advancements have seen the application of deep learning and machine learning techniques in file format 

detection. Saxe et al. (2018) [4] explored a deep learning approach for fast, format-agnostic detection of malicious 

web content, demonstrating the versatility of neural networks in security contexts. Eken et al. (2019) [5] developed 

the DoCA system, which leverages content-based classification for digital documents, showcasing significant 

improvements in the automation of file format identification. Venkata et al. (2020) [6] delved into machine 

learning methodologies for text file format identification, providing practical insights into training models for 

accurate classification. Li et al. (2023) [7] further expanded on this by introducing a scalable, content-based 

approach for detecting textual file types, emphasizing the efficiency of handling large-scale data. 

 

Innovative approaches have also emerged, focusing on novel aspects of detection and classification. Tian et al. 

(2022) [8] discussed code authorship attribution using both content-based and non-content-based features, 

underscoring the importance of feature diversity in identifying authors of code segments. Peng et al. (2022) [9] 

introduced an image-based method for programming language identification, leveraging visual patterns to 

differentiate between languages. Finally, Chen et al. (2021) [10] presented a language-independent approach to 

classifying textual file fragments, demonstrating its effectiveness across various languages and highlighting its 

applicability in multilingual data environments.  

 

3. ALGORITHM AND MODEL 
 

In this study, the goal of our approach is to classify programming languages from text files accurately. We leverage 

the BERT (Bidirectional Encoder Representations from Transformers) model for multi-class classification to 

handle 21 programming languages: YAML, Elixir, GAS, GLSL, Julia, Diff, C, SQL, PHP, C++, Text, Java, 

Markdown, Ruby, Javascript, Kotlin, JSON, Go, C#, Rust, and Dart. This section details the dataset preprocessing, 

BERT model architecture, training methodology, and evaluation metrics. 

 

3.1 MODEL 

 

As shown in Figure 1, our approach employs a BERT (Bidirectional Encoder Representations from Transformers) 

model for multi-class programming language classification, leveraging its capability to capture intricate contextual 

information from text. BERT excels in understanding syntactic and semantic nuances, essential for accurately 

distinguishing between programming languages. Our model integrates dense layers and softmax activation to 

perform multi-class classification efficiently. Tokenization and embedding of programming language text facilitate 

the extraction of meaningful features, which are then processed through dense layers to extract hierarchical 
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representations. The final softmax layer assigns probabilities across 21 programming languages, indicating the 

likelihood of each language being the correct classification for the input text. This architecture ensures robust 

performance in identifying programming languages from textual data, making it suitable for integration into 

various applications requiring automated language detection and classification. Our model utilized BERT 

(Bidirectional Encoder Representations from Transformers) embeddings for multi-class classification. 

 
𝐸𝐵𝐸𝑅𝑇 = 𝐵𝐸𝑅𝑇(𝑥) (1) 

 

The BERT embeddings undergo processing through fully connected layers, commonly known as dense layers, 

within our model architecture. These layers serve crucial roles by applying nonlinear transformations to the input 

data. Their function is pivotal in enabling the model to discern intricate patterns and correlations embedded within 

the BERT representations. This capability facilitates the extraction of high-level features that are pertinent to the 

classification of programming languages. Following the transformation through dense layers, the processed data 

flows into a classification layer. This layer consists of additional fully connected neural network layers culminating 

in a softmax activation function. The softmax function normalizes the output into probabilities across the 21 

programming languages we aim to classify: YAML, Elixir, GAS, GLSL, Julia, Diff, C, SQL, PHP, C++, Text, 

Java, Markdown, Ruby, Javascript, Kotlin, JSON, Go, C#, Rust, and Dart. These probabilities indicate the 

likelihood of each language being the correct classification for the given input text. This comprehensive 

architecture ensures that our model effectively learns and distinguishes between different programming languages 

based on the learned embeddings and extracted features. 

 

𝑃(𝑚𝑢𝑙𝑡𝑖_𝑐𝑙𝑎𝑠𝑠 = 𝑐|𝐸𝐿𝑆𝑇𝑀) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐹𝐶(𝐸𝐵𝐸𝑅𝑇)) (2) 

 

where 𝑐 represents one of the classes. 

 

The output from the fully connected layers is subsequently processed by a softmax activation function. This 

function normalizes the output values, converting them into probabilities across the various programming classes. 

By ensuring that these probabilities sum up to one, the softmax function renders them interpretable as confidence 

scores for each programming class. This enables us to understand the model's level of certainty in assigning a 

particular programming language label to the input data, providing clarity and reliability in the classification 

process. 
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Figure 1: BERT for Multi-Class Classification. 

 

3.2 Prospects of Large Language Models (LLM) 

 

Large Language Models (LLMs) such as GPT [11], GPT-2 [12], and GPT-3 [13] have revolutionized natural 

language processing tasks [14][15][16]. These models, trained on vast amounts of text data, possess remarkable 

language understanding capabilities and can generate coherent and contextually relevant responses to input 

prompts. In the context of sentiment analysis, LLMs offer several advantages, including the ability to capture 

subtle nuances of sentiment expressed in Reddit comments, understand contextual cues, and generate human-like 

responses. For example, recent studies have highlighted the applications of LLMs in various domains, including 

the design of cloud-based systems and emotionally intelligent dialogue generation [21][22]. Specifically, the use 

of LLMs in sentiment analysis has been demonstrated to effectively capture and interpret sentiments in diverse 

contexts, such as public opinion analysis during elections and network intrusion detection [23][24]. 

 

Moreover, advanced machine learning techniques are being integrated with LLMs to further enhance their 

capabilities. For instance, deep reinforcement learning has been applied to optimize resource allocation in 

SDN/NFV-enabled networks [25]. This integration of LLMs and reinforcement learning can lead to more efficient 

and intelligent systems. Additionally, LLMs are being used in conjunction with other machine learning models, 

such as eXtreme Gradient Boosting, for predictive analytics in fields like healthcare, improving the accuracy of 

heart attack predictions [26]. Furthermore, feature manipulation techniques are being employed with diffusion 

probabilistic models (DDPM) for change detection, showcasing the versatility and adaptability of LLMs in various 

applications [27]. In the realm of e-commerce, LLMs are enhancing recommendation systems by analyzing 

customer reviews with sophisticated models like BERTFusionDNN, leading to more personalized and effective 
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recommendations [28]. Finally, the integration of knowledge distillation methods is helping in the efficient transfer 

of knowledge from large LLMs to smaller models, ensuring that high-level capabilities are maintained while 

reducing computational requirements [29]. 

 

LLMs are also making significant contributions to high-precision tasks, such as neuronal segmentation, where an 

ensemble approach using models like YOLOX, Mask R-CNN, and UPerNet has achieved impressive results [30]. 

Furthermore, LLMs are enhancing the capabilities of e-commerce chatbots, with models like Falcon-7B being 

used alongside 16-bit full quantization to improve performance and efficiency [31]. The generation of training 

data using tools like ChatGPT is being explored to optimize lightweight models, which is crucial for developing 

effective and resource-efficient machine learning applications [32]. Studies have also shown that LLMs like BERT 

can accurately predict word similarity effects in context, highlighting their potential in semantic analysis tasks 

[33]. Additionally, optimization modeling for efficient virtual network function (VNF) placement is being 

advanced through techniques that leverage the capabilities of LLMs, demonstrating their broad applicability in 

technical fields [34]. 

 

LLMs are increasingly being used for complex domain-specific tasks. For instance, a dual-augmentor framework 

has been developed for domain generalization in 3D human pose estimation, significantly improving the accuracy 

and robustness of pose predictions across diverse environments [35]. Additionally, deep learning models are being 

utilized to classify crystal systems in lithium-ion batteries, which enhances the accuracy and efficiency of materials 

research and development [36]. In the legal domain, a Conv1D-based approach has been proposed for multi-class 

classification of legal citation texts, demonstrating the versatility of LLMs in handling structured text data [37]. In 

computer vision, source-free domain adaptive human pose estimation has been explored, allowing for accurate 

pose estimation without requiring labeled target domain data [38]. LLMs have also shown promise in financial 

forecasting, with models like LSTM being used for stock market analysis and prediction, particularly in the 

technology sector [39]. Furthermore, LLMs are being integrated into edge computing environments for constraint-

aware NFV resource allocation, improving the efficiency and scalability of network functions [40]. Finally, LLMs 

are being systematically reviewed for their potential in forecasting and anomaly detection, highlighting their 

growing importance in predictive analytics and monitoring applications [41]. 

 

 

4. EXPERIMENTS 
 

4.1 Datasets 

 

Our dataset consists of a total of 40,759 documents encompassing code samples from various programming 

languages. These documents were collected from diverse GitHub repositories, including languages such as YAML, 

Elixir, GAS, GLSL, Julia, Diff, C, SQL, PHP, C++, Text, Java, Markdown, Ruby, Javascript, Kotlin, JSON, Go, 

C#, Rust, and Dart. The dataset is divided into training, validation, and test sets in a ratio of 7:1:2: Training Set: 

28,531 documents used for training and parameter optimization. Validation Set: 5,691 documents used for tuning 

model hyperparameters and evaluating performance during training. Test Set: 6,537 documents used for final 

evaluation of the model's generalization ability and accuracy. Each document is labeled with its corresponding 

programming language category, ensuring that the model can accurately learn and predict features and patterns of 

different programming languages during both training and evaluation phases. This diverse and comprehensive 

dataset serves as a robust foundation and testing platform for programming language classification tasks. 

 

 

4.2 Evalution metrics 

 

The Macro F1-Score serves as a comprehensive metric for evaluating the performance of our multi-class sentiment 

classification model in programming language detection. This metric considers precision and recall across all 

programming classes, making it particularly valuable in handling imbalanced class distributions inherent in 

programming language datasets. Precision measures the accuracy of positive predictions, indicating the proportion 

of correctly predicted positives. Macro Precision averages precision across all classes, ensuring each class 

contributes equally to the metric regardless of dataset frequency. This characteristic makes the Macro F1-Score a 

robust measure for assessing the effectiveness of our model in accurately classifying programming languages 

across diverse scenarios. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑎𝑐𝑟𝑜  =
1

𝑁
∑

𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖

𝑁

𝑖=1
(3)  

 

Recall assesses the model's capability to identify all positive instances. Recall Macro, on the other hand, represents 

the average recall computed across all classes and is calculated as: 

 

𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑎𝑐𝑟𝑜  =
1

𝑁
∑

𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖

𝑁

𝑖=1
(4) 

 

The Macro F1-Score is determined by computing the harmonic mean of precision and recall, assigning equal 

importance to every class. It is defined as: 

 

𝐹1𝑚𝑎𝑐𝑟𝑜 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑎𝑐𝑟𝑜 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑎𝑐𝑟𝑜

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑎𝑐𝑟𝑜 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑎𝑐𝑟𝑜

(5) 

 

Where:  

 

𝑇𝑃𝑖   is the number of true positives for class 𝑖.  
𝐹𝑃𝑖   is the number of false positives for class 𝑖.  
𝐹𝑁𝑖 is the number of false negatives for class 𝑖.   
𝑁 is the total number of classes. 

 

In summary, the Macro F1-Score provides a balanced evaluation of our model's multi-class classification 

performance in programming language detection. It ensures fairness in assessments amid imbalanced class 

distributions by considering precision and recall across all programming classes. This metric measures the 

accuracy of positive predictions (precision) and their coverage (recall), averaging precision across all classes to 

equally weigh each class's contribution, irrespective of its prevalence in our dataset. Thus, the Macro F1-Score 

effectively evaluates the effectiveness of our model in accurately classifying programming languages across 

diverse scenarios. 

 

4.3 Results  

 

Table 1 presents the performance metrics of different models for the task of multi-class programming language 

classification. These models include Convolutional Neural Network (CNN) [17], Bidirectional Long Short-Term 

Memory (Bi-LSTM) [18], LSTM combined with CNN (LSTM+CNN) [19], and BERT (Bidirectional Encoder 

Representations from Transformers). BERT is a pretrained model based on the Transformer architecture, 

specifically designed for natural language processing tasks. The CNN model focuses on capturing local features 

in text through convolutional and pooling layers. The Bi-LSTM model captures contextual information in text 

using bidirectional recurrent neural networks, while the LSTM+CNN model combines convolution and long short-

term memory networks to enhance classification performance. The BERT model leverages its pretrained 

capabilities and bidirectional encoders to effectively capture and understand semantic and syntactic features in 

text, demonstrating outstanding performance in multi-class text classification tasks. Next, we will analyze and 

compare the performance results of these models in the programming language classification task. 

Table 1: Model Results  

Model Macro Precision Macro Recall Macro F1-Score 

CNN 0.18 0.20 0.16 

Bi-LSTM 0.28 0.23 0.25 

LSTM+CNN 0.18 0.15 0.16 

BERT 0.94 0.97 0.95 

 

According to the results, there is a significant variation in the performance of each model in the multi-class 

programming language classification task. The BERT model demonstrates outstanding performance with a Macro 

F1-Score of 0.95, which is much higher than the other models. Specifically, BERT achieves a Macro Precision of 

0.94 and Macro Recall of 0.97, indicating excellent precision and recall. In contrast, the CNN and LSTM+CNN 

models achieve lower Macro F1-Scores of 0.16, suggesting challenges in handling programming language 
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classification. The Bi-LSTM model performs moderately with a Macro F1-Score of 0.25, showing efforts to 

balance precision and recall. In conclusion, BERT exhibits significant advantages in this task, highlighting its 

substantial improvement in handling multi-class text classification problems.                                                                     

 

5. CONCLUSION 
 

This study delves into the intricate task of multi-class programming language classification, which is essential 

for enhancing software engineering practices and facilitating efficient code analysis. The accurate detection of 

programming languages from textual data is pivotal for automating code comprehension, ensuring robust 

software maintenance, and identifying evolving language usage trends across diverse GitHub repositories. 

Motivated by the imperative for precise classification, our investigation focuses on leveraging advanced models 

capable of discerning subtle syntactic and semantic nuances inherent in various programming languages. Among 

the models evaluated, BERT stands out as exceptionally effective, harnessing its pre-trained Transformer 

architecture and bidirectional context modeling capabilities. This framework enables BERT to capture and 

interpret complex language features crucial for accurate classification tasks spanning a wide spectrum of 

programming languages.  

 

The evaluation of our approach demonstrates BERT's remarkable performance, achieving a Macro F1-Score of 

0.95, with notably high Macro Precision (0.94) and Macro Recall (0.97). These metrics surpass those of all other 

models tested, underscoring BERT's superiority in accurately categorizing programming languages based on 

textual cues. This study underscores the pivotal role of advanced deep learning models, particularly BERT, in 

advancing the automation of programming language detection. The findings emphasize the potential of such 

models to significantly enhance the efficiency and accuracy of software engineering processes. Future research 

directions could explore the integration of ensemble techniques or domain-specific adaptations to further refine 

these models for specific programming language classification tasks. Such advancements hold promise for 

broadening the applications of automated language detection across diverse domains within software engineering 

and beyond. 
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