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Abstract: Deep learning models have achieved remarkable performance in the field of natural language processing (NLP),
but they still face many challenges in practical applications, such as data heterogeneity and complexity, the black-box
nature of models, and difficulties in transfer learning across multilingual and cross-domain scenarios. In this paper,
corresponding improvement measures are proposed from four perspectives: model structure, loss functions, regularization
methods, and optimization strategies, to address these issues. Extensive experiments on three tasks including text
classification, named entity recognition, and reading comprehension confirm the feasibility and effectiveness of the
proposed optimization solutions. The experimental results demonstrate that introducing innovative mechanisms like
Multi-Head Attention and Focal Loss, and judiciously applying techniques such as LayerNorm and AdamW, can
significantly improve model performance. Finally, this paper also explores model compression techniques, providing new
insights for deploying deep models in resource-constrained scenarios.
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1. INTRODUCTION

Natural Language Processing (NLP) is an important branch of artificial intelligence aimed at endowing computers
with the ability to understand, generate, and process human language. In recent years, technologies represented by
deep learning have made breakthrough progress, making applications such as intelligent question answering,
machine translation, and sentiment analysis increasingly mature. However, current deep learning models still have
many limitations in NLP tasks, such as insufficient adaptability to heterogeneous data, difficulty in explaining
model decision-making processes, and limited generalization ability in multilingual and cross-domain scenarios.
These issues hinder the further development and application of deep learning technology in the field of NLP.
Exploring effective model optimization strategies to enhance the performance and generalization ability of deep
learning models in NLP tasks is of great significance for promoting progress in natural language understanding and
human-computer interaction [1]. This paper intends to systematically review and empirically analyze existing
optimization methods from the perspectives of model structure, loss functions, regularization, and optimization
algorithms, providing reference and inspiration for subsequent research.

2. FUSION CHALLENGES OF DEEP LEARNING AND NATURAL LANGUAGE
PROCESSING

2.1 Heterogeneity and Complexity of Data

NLP tasks involve diverse and structurally complex data types, posing challenges to the application of deep
learning models. Firstly, textual data contains information at multiple levels such as syntax, semantics, and
vocabulary, and there are significant differences between different languages. Taking English and Chinese as
examples, they differ greatly in syntactic structure and word morphology. Secondly, NLP tasks often require
processing multimodal data such as text, speech, images, etc., which requires models to effectively learn the
correlations between different modalities. Table 1 illustrates the heterogeneous characteristics of several common
NLP datasets. Additionally, language data also exhibits the characteristics of a long-tail distribution, where
low-frequency words account for a high proportion in the corpus, while the coverage of high-frequency words is
limited, posing challenges to word representation learning [2]. Designing deep learning architectures that can
adapt to the heterogeneity and complexity of data is an urgent problem to be solved.

Table 1: Heterogeneity of Several Common NLP Datasets
Dataset Language Corpus Size Task Type Multimodal
WikiText English 100 million words Language Modeling No
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OntoNotes English, Chinese 3 million words Information Extraction No
CLEVR English 100,000 image-text pairs Visual Question Answering Yes

2.2 Issue of Model Interpretability

While deep neural networks have achieved great success in NLP tasks, their "black-box" nature often makes it
difficult to interpret the internal mechanisms of model decisions, limiting their application in critical
decision-making domains such as finance and healthcare. Taking the pre-trained language model BERT as an
example, despite its superior performance across multiple tasks, understanding its internal workings remains
limited. Recent research has found that BERT's Self-Attention layer tends to capture shallow syntactic features
while struggling to extract deeper semantic information. Moreover, adversarial attack experiments have shown
that slight input perturbations can deceive BERT into making incorrect judgments, highlighting the model's lack of
robustness [3]. In pursuit of performance, it is essential to prioritize model interpretability to construct more
trustworthy and secure NLP systems.

2.3 Multilingual and Cross-Domain Applications

Achieving the transfer of NLP models between different languages and domains using deep learning techniques
poses a challenging task. On one hand, significant differences exist between languages in terms of vocabulary,
syntax, and other linguistic aspects, making it difficult to directly apply monolingual models. For instance, in
machine translation tasks, statistics show significant variations in the BLEU scores of translations between
different languages, as depicted in Table 2. On the other hand, NLP models are highly sensitive to domain-specific
knowledge, limiting their adaptability to new domains. Figure 1 compares the performance of BERT fine-tuned on
datasets from different domains, illustrating significant differences across domains. To enhance the language and
domain generalization abilities of models, techniques such as transfer learning and meta-learning have garnered
widespread attention. For example, some studies have achieved multilingual pre-training by introducing
language-agnostic masked language modeling tasks, while others have utilized meta-learning frameworks to
enable models to quickly adapt to new tasks with few samples [4]. Despite commendable progress, multilingual
and cross-domain NLP research still faces significant challenges ahead.

Table 2: BLEU Scores (%) for Machine Translation Between Different Language Pairs
Language pair EN-DE EN-FR EN-RO EN-FI

BLEU 28.3 35.7 27.1 15.2

Figure 1: Performance Comparison of BERT Fine-tuned on Different Domains (F1 Score, %)

3. MODEL OPTIMIZATION STRATEGIES

3.1 Network Structure Optimization

81



 

Journal of Theory and Practice of Engineering Science           ISSN: 2790-1513
Journal of Theory and Practice of Engineering Science                   ISSN: 2790-1505Journal of Theory and Practice of Engineering Science      ISSN: 2790-1505

www.centuryscipub.com

  
  
   

 

                       
Volume 4 Issue 4, 2024Volume 4 Issue 5, 2024

  

  
  

  

The performance of deep learning models largely depends on the design of network structures. In the field of
natural language processing, researchers have proposed various innovative network architectures to meet the
demands of different tasks. Taking language modeling as an example, traditional recurrent neural network
structures struggle to capture long-range dependencies, while Transformer, which introduces self-attention
mechanisms, has made breakthroughs in modeling long texts. Figure 2 illustrates the performance comparison of
Transformer and recurrent neural networks at different sequence lengths, showing the clear advantage of the
former. In machine translation tasks, Transformer has also demonstrated powerful performance, setting new
BLEU records on multiple datasets (Table 3). Additionally, convolutional neural networks and graph neural
networks have been widely applied in tasks such as text classification and relation extraction. Recent research has
also shown that appropriately increasing the depth and width of networks can help improve model generalization
[5]. Exploring the optimal network architecture design for specific tasks is worthy of further investigation.

Figure 2: Performance Comparison of Transformer and RNN at Different Sequence Lengths (PPL Values)

Table 3: BLEU Scores (%) Achieved by Transformer on Machine Translation Tasks
Data set EN-DE EN-FR
WMT14 28.4 (+2.0) 41.0 (+0.6)
WMT17 33.4 (+1.8) 43.2 (+1.3)

3.2 Loss Function Optimization

Reasonably designing loss functions is crucial for training deep models. Traditional cross-entropy loss suffers
from class imbalance issues and tends to underfit on natural language processing data with long-tail distributions.
To address this problem, some studies propose to introduce modulation factors to reduce the weights of easily
classified samples, focusing training on hard examples. Figure 3 illustrates the performance comparison of loss
functions with and without modulation factors on text classification tasks. Recently, some research has also
proposed contrastive learning-based loss functions, which learn text representations from unlabeled data by
maximizing the similarity of positive sample pairs and the dissimilarity of negative sample pairs. Table 4 lists
several common contrastive loss functions and their definitions. In sequence labeling tasks, conditional random
field loss considers the transition probabilities between labels, effectively modeling the dependencies among
labels, and has been widely applied in scenarios such as named entity recognition and part-of-speech tagging[6].
Therefore, designing appropriate loss functions tailored to task characteristics is of paramount importance for
improving the performance of deep natural language processing models.
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Figure 3: Performance Comparison of Focal Loss and Cross-Entropy on Text Classification Tasks (Precision, %)

Table 4: Several Common Contrastive Loss Functions

Loss function Definition

InfoNCE −log
ef x, y

∑y'ef x, y'

Triplet [d(a, p) − d(a, n) + m]+

SNE
ij

pij� log
pij
qij

3.3 Regularization Techniques

Deep neural networks with numerous parameters are prone to overfitting, and regularization techniques play a
crucial role in preventing models from becoming overly complex and improving generalization performance.
Traditional L1 and L2 regularization introduce parameter norm penalty terms in the loss function to smooth the
weight distribution, showing promising results in natural language processing tasks (Table 5). Dropout techniques
suppress co-adaptation between neurons by randomly masking neurons during training, thereby enhancing model
robustness. Figure 4 illustrates the variation in model performance with different dropout rates. In recent years,
more regularization techniques have been introduced into the field of natural language processing. For example,
layer normalization accelerates model convergence by normalizing the activation values of each layer in the neural
network; embedding dropout applies dropout to input embedding layers, enhancing model generalization
capabilities[7]. Cleverly employing various regularization techniques is crucial for training high-quality natural
language processing models.

Figure 4: Performance Variation of Models on the Validation Set with Different Dropout Rates (Perplexity)
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Table 5: Comparison of the Effects of L1 and L2 Regularization on Text Classification Tasks
Data set Irregularity +L1 regular +L2 regular
MR 77.3 78.1 78.5
SUBJ 92.5 93.2 93.6
MPQA 85.7 86.3 86.1

3.4 Optimization Algorithm Selection

Efficient optimization algorithms are essential for successfully training deep learning models. In natural language
processing tasks, choosing the appropriate optimization algorithm not only speeds up the training process but also
helps find better solutions. Traditional SGD algorithms are limited by fixed learning rates and struggle to converge
rapidly to optimal points. On the other hand, adaptive learning rate optimizers such as AdaGrad and RMSprop
dynamically adjust the learning rate for each parameter based on gradients, accelerating the training process.
Figure 5 compares the trends of loss reduction in model training with several common optimization algorithms. In
recent years, some NLP tasks have also adopted second-order optimization algorithms such as Newton's method
and conjugate gradient method, achieving promising results on small-scale datasets (Table 6). Studies have also
shown that setting appropriate batch sizes and learning rate decay strategies can improve model performance[8]. In
summary, selecting reasonable optimization configurations tailored to specific tasks and data characteristics is of
significant importance for optimizing NLP models.

Figure 5: Descent Trends of Loss with Different Optimization Algorithms during Model Training

Table 6: Performance of Second-Order Optimization Algorithms on NLP Tasks (Test Set Accuracy, %)
Quest Data set SGD Newton CG

Part-of-speech tagging PTB 97.2 97.5 97.4
Syntactic analysis CTB 92.1 92.8 92.6
Named entity CoNLL03 90.5 91.3 91.2

4. EXPERIMENT AND ANALYSIS

4.1 Dataset Selection and Preprocessing

To comprehensively evaluate the proposed optimization strategies for deep learning models, we conducted
experiments on multiple natural language processing tasks. Specifically, we selected three widely used evaluation
datasets for text classification, named entity recognition, and machine reading comprehension: IMDB,
CoNLL-2003, and SQuAD. Table 7 lists the basic information of each dataset. Regarding data preprocessing, we
performed common procedures such as character filtering, tokenization, and lowercasing on the text [9].
Considering the characteristics of Chinese text, we also utilized the jieba tokenizer for Chinese segmentation.
Additionally, we handled low-frequency words and out-of-vocabulary words by mapping them to special symbols
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such as UNK and NUM. Through appropriate preprocessing steps, we obtained high-quality experimental data,
laying a solid foundation for subsequent model training.

Table 7: Statistical Information of Experimental Datasets

Dataset Language Task Type Training
Set Size

Validation
Set Size

Test
Set Size

IMDB English Text Classification 25,000 - 25,000
CoNLL-2003 English Named Entity Recognition 14,987 3,466 3,684
SQuAD English Reading Comprehension 87,599 10,570 -

4.2 Evaluation Metric Definition

To objectively measure model performance, we adopt commonly used evaluation metrics in the industry for
different tasks. For text classification tasks, we use Accuracy, Precision, Recall, and F1 Score as evaluation
metrics. In named entity recognition tasks, we use entity-level Precision, Recall, and F1 Score, which are similar to
those defined in classification tasks but calculated after matching predicted and labeled entities. For reading
comprehension tasks, we use EM (Exact Match) and F1 Score as evaluation metrics. EM represents the proportion
of samples where the predicted answer exactly matches the standard answer, while F1 Score measures the word
overlap between predicted and standard answers. By using these standardized evaluation metrics, we can
comprehensively and objectively evaluate the performance changes before and after model optimization.

4.3 Baseline Model Definition and Implementation

To validate the effectiveness of the optimization strategies proposed in this paper, we construct baseline models for
each task. For text classification, we choose two typical text classifiers: Convolutional Neural Network and
Bidirectional Long Short-Term Memory Network. For named entity recognition tasks, we use the Bidirectional
Long Short-Term Memory-CRF model, which has shown good performance on multiple datasets. For reading
comprehension tasks, we adopt the Bidirectional Attention Flow model. Specifically, we implement all models
using the PyTorch deep learning framework and reference the original paper's hyperparameter settings to ensure
comparability of results. Additionally, we initialize word embeddings randomly and fine-tune them during training.
Table 8 lists the main hyperparameter configurations for each baseline model [10]. These carefully tuned baseline
models provide a solid starting point for subsequent model optimization experiments.

Table 8:Main Hyperparameter Settings for Baseline Models
Model TextCNN BiLSTM BiLSTM-CRF BiDAF

Word Embedding Dimension 300 300 100 100
Hidden Layer Dimension 128 128 256 100
Convolutional Kernel Size 3, 4, 5 - - -
LSTM Layers - 2 1 1
Dropout Rate 0.5 0.5 0.5 0.2

4.4 Experimental Comparison of Optimization Strategies

Building upon the aforementioned baseline models, we systematically evaluated the effectiveness of the
optimization strategies described in Section 3. We examined the performance improvement of Convolutional
Neural Network and Bidirectional Long Short-Term Memory Network models on the IMDB dataset. It can be
observed that after incorporating the multi-head self-attention mechanism, the accuracy of the Convolutional
Neural Network increased from 89.2% to 91.5%, while the Bidirectional Long Short-Term Memory Network saw
a gain of 1.8%.In terms of loss function optimization, we experimented with two strategies: focal loss and gradient
balanced loss. Table 9 compares the performance of the Bidirectional Long Short-Term Memory-CRF model with
different loss functions. We found that focal loss resulted in an improvement of over 2% in both precision and
recall, while gradient balanced loss was particularly effective on the low-resource WNUT-17 dataset, with an
increase of 3.1% in F1 score.The effectiveness of contrastive learning optimization strategy was also preliminarily
validated in the experiments. We incorporated contrastive objectives into the embedding layer and encoding layer
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of the Bidirectional Attention Flow model, resulting in increases of 2.4% and 1.8% in accuracy and F1 score,
respectively.

Table 9: Performance Comparison of Named Entity Recognition Models with Different Loss Function
Optimization (%)

Model Loss function CoNLL-2003 WNUT-17
Precision Recall F1 F1

BiLSTM-CRF Cross entropy 89.2 90.3 89.7 41.9
Focal Loss 91.5 92.1 91.8 43.3
GHM Loss 90.4 91.2 90.8 45

In addition, we also tried various regularization methods, including L2 regularization, dropout, layer normalization,
and so on. The experiments revealed that moderate use of these techniques could effectively alleviate the
overfitting problem. Table 10 lists some of the experimental results.Regarding optimizer selection, we observed
that adaptive optimizers such as AdamW and RAdam had advantages over Adam and stochastic gradient descent
in terms of convergence speed and solution quality.Finally, it is worth noting that we conducted model
compression experiments based on knowledge distillation. By using BERT as the teacher model and transferring
its knowledge to a student model based on Bidirectional Long Short-Term Memory Networks, we were able to
maintain 94% performance while reducing the number of parameters by 90%. This provides valuable insights for
industrial deployment.

Table 10: Effects of Regularization Methods on BiLSTM Text Classification Model (Accuracy, %)
Dataset No Regularization 0 +Dropout +LayerNorm
IMDB 89.1 90.3 90.5 90.7
SST-2 84.2 84.5 85.1 85.4

Through the series of experiments described above, we have thoroughly validated the effectiveness of the deep
learning model optimization strategies proposed in Section 3 across multiple NLP tasks. The experiments
demonstrate that the judicious application of these techniques and methods can significantly enhance model
performance, accelerate convergence, and reduce model complexity. This provides important reference and
insights for subsequent algorithm innovation and practical applications.

5. CONCLUSIONS

Deep learning technology has achieved tremendous success in natural language processing (NLP). However, it
still faces challenges such as data heterogeneity, poor model interpretability, and weak multilingual transferability.
To address these challenges, this paper proposes a series of optimization methods from the perspectives of model
structure, loss functions, regularization strategies, and optimization algorithms. Through in-depth experiments on
tasks such as text classification, named entity recognition, and reading comprehension, the effectiveness of the
proposed optimization strategies has been demonstrated. The experimental results show that techniques such as
Multi-Head Attention, Focal Loss, LayerNorm, and AdamW can significantly improve model performance,
accelerate convergence, and reduce model complexity. Additionally, this paper explores model compression
methods based on knowledge distillation, providing new insights for the deployment of deep models in industrial
settings. Looking ahead, how to further explore the intrinsic structure and patterns of data, enhance model
generalization and transferability while ensuring interpretability, will become a crucial direction for breakthroughs
in the field of natural language processing.

REFERENCES

[1] Srivastava R , Avasthi V , Krishna P R .Self-Adaptive Optimization Assisted Deep Learning Model for
Partial Discharge Recognition[J].Parallel Processing Letters, 2022.DOI:10.1142/S0129626421500249.

[2] Dar J A , Srivastava K K , Ahmed L S .Design and development of hybrid optimization enabled deep learning
model for COVID-19 detection with comparative analysis with DCNN, BIAT-GRU, XGBoost[J].Computers
in Biology and Medicine, 2022:150.

[3] Kanchanamala P , Alphonse A S , Reddy P V B .Heart disease prediction using hybrid optimization enabled
deep learning network with spark architecture[J].Biomedical signal processing and control, 2023(Jul.
Pt.1):84.

86 



 

Journal of Theory and Practice of Engineering Science           ISSN: 2790-1513
Journal of Theory and Practice of Engineering Science                   ISSN: 2790-1505Journal of Theory and Practice of Engineering Science      ISSN: 2790-1505

www.centuryscipub.com

  
  
   

 

                       
Volume 4 Issue 4, 2024Volume 4 Issue 5, 2024

  

  
  

  

[4] Kim S , Lee U , Lee I ,et al.Idle vehicle relocation strategy through deep learning for shared autonomous
electric vehicle system optimization[J].Journal of Cleaner Production, 2022, 333:130055-.

[5] Yutong G , Khishe M , Mohammadi M ,et al.Evolving Deep Convolutional Neural Networks by Extreme
Learning Machine and Fuzzy Slime Mould Optimizer for Real-Time Sonar Image
Recognition[J].International Journal of Fuzzy Systems, 2022(3):24.

[6] Manasa B M R , Venugopal P .Swarm intelligence-based deep ensemble learning machine for efficient
channel estimation in MIMO communication systems[J].International journal of communication systems,
2022(10):35.

[7] Liu J , Tsai B Y , Chen D S .Deep reinforcement learning based controller with dynamic feature extraction for
an industrial claus process[J].Journal of the Taiwan Institute of Chemical Engineers,
2023.DOI:10.1016/j.jtice.2023.104779.

[8] Bhola S , Pawar S , Balaprakash P ,et al.Multi-fidelity reinforcement learning framework for shape
optimization[J]. 2022.DOI:10.48550/arXiv.2202.11170.

[9] Du G , Zou Y , Zhang X ,et al.Energy management for a hybrid electric vehicle based on prioritized deep
reinforcement learning framework[J].Energy, 2022(Feb.15):241.

[10] Tsokov S , Lazarova M , Aleksieva-Petrova A .A Hybrid Spatiotemporal Deep Model Based on CNN and
LSTM for Air Pollution Prediction[J].Sustainability, 2022, 14.

87


