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Abstract: Lithium-ion (Li-ion) batteries are pivotal in energy storage, powering diverse applications from portable 

electronics to electric vehicles. Optimizing Li-ion battery performance relies on understanding the crystal system properties 

of constituent materials, notably cathodes. This paper proposes a novel approach using Deep Neural Networks (DNNs) for 

multi-class classification of Li-ion silicate cathode crystal systems. Previous research underscores crystal chemistry's 

importance and the potential of machine learning in Li-ion battery materials. However, existing methodologies face 

challenges in accurately capturing material complexities. Our DNN-based model aims to address these limitations, offering 

improved predictive performance for crystal system classification. 
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1. INTRODUCTION 
 

Lithium-ion (Li-ion) batteries have emerged as a cornerstone technology in the field of energy storage, powering 

a wide array of devices from portable electronics to electric vehicles. A crucial aspect in optimizing the 

performance and design of Li-ion batteries lies in understanding the crystal system properties of their constituent 

materials, particularly cathodes. The crystal system of these materials influences their structural stability, 

electrochemical behavior, and overall performance within the battery system. This paper focuses on elucidating 

the crystal system properties of Li-ion silicate cathodes, which play a pivotal role in determining the battery's class. 

The crystal system classification encompasses three major classes: monoclinic, orthorhombic, and triclinic. Each 

class represents distinct structural arrangements of atoms within the cathode material, thereby impacting its 

electrochemical properties and performance. 

 

In recent years, extensive research has delved into the diverse aspects of crystal system properties in Li-ion 

batteries, providing crucial insights into material behavior and performance. Notably, foundational work such as 

that referenced in [1] has explored sulfate-based polyanionic compounds, elucidating their synthesis, crystal 

chemistry, and electrochemistry aspects. Subsequently, studies referenced in [2] have further expanded our 

understanding by addressing additional facets of crystal system properties in Li-ion batteries. Moreover, the 

emergence of machine learning techniques has significantly advanced this domain, as evidenced by [3], which 

successfully utilized these methods to discover solid Li-ion conducting materials. Additionally, contributions from 

studies referenced in [4] have played a significant role in enhancing our understanding of crystal system properties, 

covering a wide range of topics such as machine learning prediction, materials design, and state prediction in Li-

ion batteries. 

 

However, existing research exhibits certain limitations. While studies such as those referenced in [5] and [6] have 

developed machine-learning-based tools for cathode optimization and materials discovery, challenges remain in 

accurately capturing the complex nature of Li-ion battery materials. Furthermore, the need for more sophisticated 

modeling approaches, as highlighted in [7-8], underscores the ongoing quest for predictive models capable of 

addressing the intricacies of crystal system properties in battery materials. Additionally, contributions from studies 

referenced in [9] and [10] have further enriched our understanding of crystal system properties, covering topics 

such as machine learning prediction, materials design, and state prediction in Li-ion batteries.  

 

To address these limitations, we propose a novel approach based on Deep Neural Networks (DNNs) [11] for 
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predicting the crystal system class of Li-ion silicate cathodes. We define the problem as a multi-class classification 

task, where the input features include physical and chemical properties such as formation energy, band gap, and 

volume, along with categorical descriptors like formula and space group. The DNN architecture will leverage the 

expressive power of deep learning to learn intricate patterns and relationships within the dataset, enabling accurate 

classification across the three crystal system classes: monoclinic, orthorhombic, and triclinic. By integrating both 

numerical and categorical features, our model aims to capture comprehensive information about the cathode 

materials, leading to improved predictive performance compared to traditional machine learning approaches. 

 

2. RELATED WORK 
 

In recent years, there has been a surge in research focusing on crystal system properties for Li-ion batteries, driven 

by the increasing demand for efficient energy storage solutions. Several studies have explored various aspects of 

crystal chemistry, electrochemistry, and prediction methodologies to enhance the performance and design of 

battery materials. Rousse and Tarascon [1] investigated sulfate-based polyanionic compounds for Li-ion batteries, 

emphasizing the synthesis, crystal chemistry, and electrochemistry aspects. Their work provided valuable insights 

into the structural characteristics and electrochemical behavior of these compounds, laying the foundation for 

further research in this area. Machine learning techniques have emerged as powerful tools for predicting crystal 

systems and optimizing battery materials. Shandiz and Gauvin [2] applied machine learning methods to predict 

the crystal system of cathode materials, demonstrating the potential of computational approaches in accelerating 

material discovery and design.  

 

Sendek et al. [3] utilized machine learning to discover solid Li-ion conducting materials, highlighting the 

effectiveness of data-driven approaches in identifying promising candidates for battery applications. Similarly, 

Kauwe, Rhone, and Sparks [4] conducted data-driven studies to explore Li-ion battery materials, leveraging 

computational methods to uncover structure-property relationships. Houchins and Viswanathan [5] developed an 

accurate machine-learning calculator for optimizing Li-ion battery cathodes, providing a practical tool for 

materials design and optimization. Liu et al. [6] further demonstrated the utility of machine learning in materials 

design and discovery for rechargeable batteries, emphasizing the importance of computational approaches in 

overcoming traditional experimental limitations. 

 

Zhao et al. [7] focused on machine learning prediction of activation energy in cubic Li-argyrodites, employing 

hierarchically encoding crystal structure-based descriptors to enhance predictive accuracy. Lv et al. [8] highlighted 

the role of machine learning as an advanced platform for materials development and state prediction in lithium-

ion batteries, showcasing its potential in accelerating research and innovation in the field. Prosini [9] investigated 

crystal group prediction for lithiated manganese oxides using machine learning techniques, contributing to the 

understanding of crystallographic transformations in battery materials. Kee and Tran [10] provided an introductory 

overview of machine learning methods and their applications in Li-ion batteries, emphasizing their significance in 

energy storage and conversion materials research. Overall, the aforementioned studies underscore the importance 

of crystal system properties in Li-ion battery materials and highlight the growing influence of machine learning 

techniques in advancing battery technology. These contributions collectively contribute to the ongoing efforts to 

develop efficient and sustainable energy storage solutions. 

 

Large Language Models (LLMs) have demonstrated their efficacy across diverse domains, showcasing their 

versatility and applicability. Xie et al. (2024) introduced a Conv1D-based approach for multi-class classification 

in legal citation text, emphasizing the potential of LLMs in legal research [13]. Similarly, Xiong et al. (2024) 

employed LLMs, specifically BERT-RCNN fusion, to enhance sentiment analysis of COVID-19 tweets, 

highlighting their effectiveness in social media analysis [14]. Furthermore, Liu et al. (2024) explored the use of 

attention mechanisms in news recommendation systems, indicating the broad utility of LLMs in personalized 

content delivery [15]. Su et al. (2024) conducted a systematic literature review, shedding light on the role of LLMs 

in forecasting and anomaly detection, offering insights into their application in predictive analytics [16]. 

Additionally, Zhao et al. (2024) proposed BERTFusionDNN to improve e-commerce recommendations, 

underscoring the significance of LLMs in enhancing customer experiences [17]. In another context, Qiao et al. 

(2023) analyzed the application of machine learning in financial risk early warning and regional prevention and 

control, further showcasing the diverse applications of LLMs [18]. Moreover, Ni et al. (2024) introduced Smartfix, 

leveraging machine learning for proactive equipment maintenance in industry 4.0, highlighting the role of LLMs 

in industrial applications [19]. These studies collectively emphasize the broad scope of LLMs and their potential 

across various fields of research and industry. 
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3. ALGORITHM AND MODEL 
 

3.1 DNN MODEL 

 

As shown in Figure 1, we propose a Deep Neural Network (DNN) approach for multi-class classification of crystal 

system properties in lithium-ion batteries. Our method leverages the expressive power of DNNs to learn intricate 

patterns and relationships within the dataset, enabling accurate classification across three crystal system classes: 

monoclinic, triclinic, and orthorhombic. The input features consist of physical and chemical properties of Li-ion 

silicate cathodes, including 'Formation Energy (eV)', 'E Above Hull (eV)', 'Band Gap (eV)', 'Nsites', 'Density 

(gm/cc)', and 'Volume'. Additionally, categorical descriptors such as 'Formula', 'Spacegroup', and 'Has 

Bandstructure' are incorporated to capture structural and compositional characteristics of the cathode materials. 

The output of our model is a multi-class classification task, where the predicted classes correspond to the crystal 

system classification: monoclinic, triclinic, and orthorhombic. 

 

 
Figure 1: DNN 

 

Our DNN architecture comprises multiple layers of densely connected neurons, allowing the model to learn 

complex representations of the input features. We employ activation functions such as ReLU (Rectified Linear 

Unit) [12] to introduce non-linearity and improve the model's capacity to capture intricate relationships in the data. 

The DNN embedding for input features, denoted as 𝐸𝐷𝑁𝑁, is obtained by passing the input features through the 

DNN model.  

 

𝐸𝐷𝑁𝑁 = 𝐷𝑁𝑁(𝑥)                                                                      

(1) 

 

 

Following feature embedding, the data is passed through a classification layer comprising fully connected layers 

and a softmax activation function. This layer outputs probabilities for each class (monoclinic, orthorhombic, 

triclinic), enabling the model to predict the crystal system with confidence. 

 

𝑃(𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 = 𝑐|𝐸𝐷𝑁𝑁) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐹𝐶(𝐸𝐷𝑁𝑁))                                       

(2) 

 

where represents one of the classes (monoclinic, orthorhombic, triclinic). 

 

3.2 Prospects of Large Language Models (LLM) 

 

Large Language Models (LLMs) such as GPT [41], GPT-2 [42], and GPT-3 [43] offer a promising approach to 

tackle the challenges associated with crystal system classification in lithium-ion batteries. With their advanced 

natural language processing capabilities, LLMs are adept at analyzing textual data related to material properties, 
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experimental findings, and research literature in battery technology. Utilizing pre-trained LLMs like GPT-3 

enables the extraction of valuable insights from vast amounts of unstructured textual data, including scientific 

papers, patents, and technical reports.  

 

Research [20-21] advances legal text classification and enhances sentiment analysis of COVID-19 tweets by 

leveraging Large Language Models (LLMs). Furthermore, [22] contributes to improving e-commerce 

recommendations, while [23] focuses on enhancing e-commerce chatbots, both utilizing LLMs to uncover insights 

and enhance customer experiences. Several studies [24-28] explore diverse applications of machine learning, 

including financial risk analysis, equipment maintenance, and resource allocation, as well as image classification 

and object detection. They often integrate LLMs to achieve better performance and efficiency. Studies [29-30] 

investigate anomaly detection and predictive modeling, respectively, utilizing Large Language Models to analyze 

multi-omics data and optimize personalized education recommendations. In addition [31], addresses resource 

allocation in network functions virtualization environments, while [32] explores automatic recognition of static 

phenomena in retouched images, demonstrating the versatility of LLMs across various domains [33-34]. Delve 

into enterprise financial risk prediction and particle filter SLAM for vehicle localization, highlighting LLMs' 

capability in tackling complex challenges. Research [35] examines semi-supervised learning in image 

classification, whereas [36] focuses on implementing computer vision technology for medical image analysis, 

showcasing the wide range of applications for LLMs in machine learning and AI. Furthermore, studies [37-38] 

investigate acoustic encoders and the fusion of labeled and unlabeled data in image classification, showcasing 

LLMs' potential in enhancing model performance. Finally [39-40], underscore the emerging synergies between 

Large Language Models and traditional machine learning methods, particularly in the realm of e-commerce 

recommendations. 

 

4. EXPERIMENTS 
 

4.1 Datasets 

 

The dataset provided comprises essential physical and chemical attributes of Li-ion silicate cathodes, crucial for 

predicting the class of a Li-ion battery. These batteries are classified based on their crystal system, which 

includes three primary categories: monoclinic, orthorhombic, and triclinic. The dataset features include 

'Formation Energy (eV)', 'E Above Hull (eV)', 'Band Gap (eV)', 'Nsites', 'Density (gm/cc)', 'Volume', Formula', 

'Spacegroup', 'Has Bandstructure'. Split into training and test sets in an 8:2 ratio, this dataset offers a 

comprehensive foundation for developing predictive models to classify Li-ion battery crystal systems, 

facilitating advancements in energy storage technology. 

 

4.2 Evalution metrics 

 

The Macro F1-Score [44] serves as a holistic measure for assessing the effectiveness of a multi-class classification 

model, taking into account both precision and recall across all classes. This metric proves especially valuable in 

scenarios where there exists an imbalance in class distribution, guaranteeing that the evaluation accurately reflects 

the model's performance for each individual class. Precision quantifies the accuracy of positive predictions, with 

Precision Macro representing the average precision calculated across all classes and is calculated as: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑎𝑐𝑟𝑜 =
1

𝑁
∑

𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑃𝑖

𝑁
𝑖=1       

                                                        (3) 

 

Recall assesses the model's capability to identify all positive instances. Recall Macro, on the other hand, represents 

the average recall computed across all classes and is calculated as: 

 

𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑎𝑐𝑟𝑜 =
1

𝑁
∑

𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑁𝑖

𝑁
𝑖=1                                                              

(4) 

 

The Macro F1-Score is determined by computing the harmonic mean of precision and recall, assigning equal 

importance to every class. It is defined as: 

 

𝐹1𝑚𝑎𝑐𝑟𝑜 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑎𝑐𝑟𝑜∗𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑎𝑐𝑟𝑜

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑎𝑐𝑟𝑜+𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑎𝑐𝑟𝑜
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(5) 

Where:  

𝑇𝑃𝑖  is the number of true positives for class 𝑖.  
𝐹𝑃𝑖  is the number of false positives for class 𝑖.  
𝐹𝑁𝑖 is the number of false negatives for class 𝑖.  
𝑁 is the total number of classes. 

 

In summary, the Macro F1-Score provides a balanced evaluation of a model's multi-class classification 

performance, ensuring fairness in assessments amid imbalanced class distributions by considering precision and 

recall across all classes. 

 

4.3 Results  

 

In our study, we assessed various classification models' effectiveness in predicting crystal system classes for 

lithium-ion batteries. The models scrutinized encompassed Support Vector Machine (SVM) [45], Logistic 

Regression (LR) [46], Naive Bayes (NB) [47], and a Voting Model, amalgamating SVM, LR, and NB. 

Additionally, we proposed a novel Deep Neural Network (DNN) approach for comparison. 

 

Table 1: Model Results 

Model Macro Precision Macro Recall Macro F1-Score 

SVM 0.37 0.45 0.39 

LR 0.54 0.48 0.49 

NB 0.29 0.37 0.32 

Voting Model 0.35 0.44 0.38 

DNN 0.82 0.82 0.81 

 

From the results presented in Table 1, it is evident that the DNN model outperforms the other models across all 

evaluation metrics. The DNN achieved a Macro F1-Score of 0.81. These results demonstrate the effectiveness of 

our DNN approach in accurately classifying crystal system properties in lithium-ion batteries. Comparatively, the 

SVM, LR, and Voting Model yielded lower performance scores across all metrics, indicating their limitations in 

capturing the complexities of the dataset. Additionally, the Naive Bayes (NB) model showed the lowest 

performance among all models, with the lowest Macro Precision, Macro Recall, and Macro F1-Score. Overall, our 

findings underscore the superiority of the DNN model in predicting crystal system classes, highlighting its 

potential for enhancing battery technology through more accurate classification of material properties. 

 

5. CONCLUSION 
 

In conclusion, our study presents a novel Deep Neural Network (DNN) approach tailored for the classification of 

crystal system properties in lithium-ion batteries. By harnessing a comprehensive set of physical, chemical, and 

categorical features, our model adeptly predicts the crystal system classes monoclinic, orthorhombic, and triclinic. 

The incorporation of deep learning techniques enables the extraction of intricate patterns and relationships within 

the dataset, facilitating precise classification across multiple classes. Our approach addresses the inherent 

challenges associated with capturing the complexities of Li-ion battery materials with accuracy. By leveraging the 

power of machine learning methodologies, particularly deep learning, our model offers valuable insights into 

crystal system properties, thereby advancing our understanding and optimization of battery performance. 

 

The implications of our study extend beyond theoretical advancements, with practical implications for researchers 

and engineers in the field. Our developed model serves as a robust tool for designing and optimizing lithium-ion 

battery materials, enabling the development of efficient and sustainable energy storage solutions. Through accurate 

classification of crystal system properties, our model empowers stakeholders to make informed decisions in 

material selection and battery design, ultimately driving progress towards environmentally friendly and cost-

effective energy storage technologies. In summary, our study demonstrates the significant potential of machine 

learning, particularly deep learning, in revolutionizing the field of battery technology. By bridging the gap between 

theory and practice, our model contributes to the ongoing quest for efficient and sustainable energy solutions, 

laying the groundwork for future innovations in the realm of lithium-ion batteries. 
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