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Abstract: As large language models gain traction in the financial sector, they are revolutionizing the workflows of
financial professionals. From data analysis and market forecasting to risk assessment and customer management, these
models demonstrate significant potential and value. By automating data processing tasks, they enhance productivity and
empower professionals to derive deeper insights and make more precise decisions. This article explores the application of
conversational intelligent reporting systems, leveraging artificial intelligence and large language models, within the
financial industry. It examines how these systems streamline reporting processes, facilitate efficient communication, and
contribute to informed decision-making, ultimately reshaping the landscape of financial market operations.
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1. INTRODUCTION

A Large language model (LLM) is an artificial intelligence system based on deep learning techniques to
understand, process, and generate human natural language. It is a major breakthrough technology in the field of
artificial intelligence. Based on the training of a large number of dense text data, it trains and learns relevant
statistical relationships from text documents through self-supervised and semi-supervised learning to achieve the
understanding and generation of human natural language.

In terms of technical principles, the large language model is mainly based on the Transformer architecture, which
was first proposed by Google at the NeurIPS conference in 2017. It is a neural network architecture designed
specifically for processing sequence data, and its core is the self-attention mechanism. The self-attention
mechanism enables the model to process a word by taking into account all the words in the input sequence, by
assigning different attention weights to different parts of the input sequence, so as to more accurately capture the
relationship between words and language context.

Moreover, during the training process, the large language model (LLM) based on the converter architecture
converts the text into numerical form through the decoding part of its encoder, thus capturing the similar meanings
of words and phrases, the context, the parts of speech and other language features [1-3]. Next, the LLM will use
this acquired language knowledge via a decoder to produce a unique text output based on its own parameters. In
terms of specific flow, the operation flow of large-scale language model is divided into several steps: accepting
input text, encoding text, decoding generation and output prediction. Before the LLM can begin to receive inputs
and produce predictive outputs, it goes through a pre-training period during which the LLM learns to perform basic
language functions, followed by a fine-tuning phase with specific constraints.

2. RELATEDWORK

2.1 Introduction to large language models

On the basis of semantic understanding, large language model has a strong ability of natural language reasoning,
decision making and generation, which is embodied in the ability and behavior of text content summary, induction,
sorting, contrast, summary, transformation, creation and analysis [4-6]. This comes from the improvement of large
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language model learning algorithms and the input and "feeding" of massive training data, and the continuous
emergence of large models with hundreds of billions or even trillions of parameters, which gives large models the
ability to "think" in a certain sense. In short, large models possess a considerable degree of human-like ability to
"understand" and "think." Therefore, it is natural to think of such a smart "brain" to collaborate with existing
enterprise applications, so as to achieve a leapfrog upgrade in the degree of intelligence of enterprise applications.
Some typical landing scenarios of large language models in enterprise applications are as follows [7-8]:

Build applications with natural language as the interactive interface, and combine mature speech/image
recognition, speech synthesis and other technologies to improve customer experience in marketing, customer
service and other fields. For example: intelligent customer consultation, intelligent call center, intelligent sales
assistant and so on

Analyze call center conversation records with the help of text extraction and analysis capabilities of large language
model, complete quality check, customer sentiment analysis and classification, hot issue extraction, and sales lead
discovery.

Build a natural language-based enterprise content search engine and portal. Compared with traditional search
solutions, large models can help better optimize and summarize search results on the basis of semantic
understanding and improve search experience. And it can be further integrated with other enterprise applications,
for example, in a typical marketing process, product descriptions can be automatically searched and sent to
customers based on customer conversations.

2.2 LLM in user interaction applications

The application of large language model in the user interaction stage mainly focuses on conversational
recommendation, aiming to break the traditional paradigm of single-round recommendation item display,
accurately capture and model the user's conversational intention by using text as a bridge, and provide users with a
more intelligent and accurate interactive recommendation process [9]. The application of LLM in the user
interaction stage can be roughly divided into the following two categories:

Task-oriented user interaction. In this scenario, we will assume that the user has a clear goal of "seeking
recommendations", and the recommendation system needs to support the user's thinking and decision-making
process, and ultimately assist the user in finding relevant items. Specifically, the large language model mostly
exists as a sub-module of the recommendation system, which is used to analyze the user's goal intention and build
the user portrait within the conversation [10-11].

Open conversational user interaction. Compared with the previous scenario, this kind of scenario mostly assumes
that the user's behavioral intention is diverse, changing and vague, and the system needs to gradually acquire the
user's interest or guide the user through interaction (including topic dialogue, small talk, question and answer, etc.)
to finally achieve the purpose of recommendation. Therefore, the large language model is usually used as the core
module of this kind of recommendation system to complete a series of behaviors from dialogue, question and
answer to recommendation at the same time with a unified text medium [12-14].

Figure 1: Interactive application of large language models

177



 

Journal of Theory and Practice of Engineering Science                   ISSN: 2790-1505Journal of Theory and Practice of Engineering Science      ISSN: 2790-1505

www.centuryscipub.com

  
  
   

 

                       
Volume 4 Issue 2, 2024Volume 4 Issue 3, 2024

  

  
  

  

2.3 Large language model dialog system

After OpenAI launched the ChatGPT dialog system, it exceeded one million users in five days, and reached 100
million users in two months, becoming the fastest growing consumer application in history [15]. The emergence of
ChatGPT demonstrates the powerful potential of large language models for human-computer dialogue. However,
as a commercial product, OpenAI does not disclose key details of ChatGPT, which makes it difficult for
researchers to fully understand how it works [16]. Replicating ChatGPT has become a target for many researchers
and Internet companies. The researchers focused on InstructGPT proposed by OpenAI before ChatGPT appeared,
believing that InstructGPT contained the key technology of ChatGPT. InstructGPT, on the other hand, uses the
SFT and RLHF mentioned in the previous chapter to respond to human instructions. To train a large language
model that can follow human instructions like InstructGPT, there are three core steps:

(1) Fine-tune a good SFT dataset with a very strong base model

(2) Get feedback scores based on multiple outputs of the fine-tuned model and train an RW model

(3) Use the RW model to fine-tune the language model

It can be seen that the dialogue language model first needs a strong base model, and the key difficulty of the
subsequent RW model and RLHF fine-tuning is how to obtain a high enough quality data set.

3. METHODOLOGY

3.1 DiagGPT Framework

DiagGPT is a multi-agent and collaborative system consisting of several modules, of which the Topic Manager is
particularly important, which tracks the conversation state and automatically manages the conversation topics.
Each module is an LLM with specific prompts that guide its functions and responsibilities.

DiagGPT's workflow consists of four phases: (1) Thinking about topic development: The topic manager takes user
queries and analyzes and predicts topic development for the current conversation round; (2) Maintain the topic
stack: Maintain the topic stack of the entire dialogue according to the operation command of the topic manager; (3)
Enrich the topic: Retrieve the current topic according to the context of the conversation and enrich it; (4) Generate
replies: Generate replies for users according to specific guidance prompts, combined with rich topics and context.
Defining the topic as the main topic of the conversation identifies the main focus of the communication. Define a
task as a specific goal that needs to be accomplished in a task-oriented conversation. This particular task should be
completed after passing through all the predefined topics in the conversation.

3.2 Thinking Topic Development

DiagGPT's main module is the Topic Manager, which is responsible for determining topic development based on
user queries. Before each round of conversation, the system needs to adjust the current topic. Therefore, the user's
query is first entered into the Topic Manager.

Figure 2: DiagGPT model architecture diagram
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Topic Manager is an AI agent that analyzes chat history and predicts topic development. It has an action list with
various tools to perform the task. Each action corresponds to a program function, implemented using Python's
decorator function [17]. When the Topic Manager receives a user query, it analyzes all the available information
and decides which action to perform based on the prompts for each action.

The LLM has strong understanding and reasoning capabilities to accurately understand user intent and effectively
communicate with users.

3.3 Maintaining Topic Stack

After the system takes the action output from the theme manager, it executes the corresponding commands to
process and control theme changes, including maintaining the theme stack.

The topic stack in an AI system is a data structure used to store and track the state of a conversation. The
progression of a conversation is considered to have multiple phases, or states, and these states occur in a
first-in-first-out (FIFO) order that can be effectively modeled using the stack [18-19].
Consultants often have a list in mind when diagnosing, and if the user doesn't ask a new question, the conversation
stalls.

The consultant will check the checklist and provide a report and comprehensive analysis. You can simplify this
process by loading topics for predefined tasks. When the function prompted for this action is executed, the topic in
the list is loaded into the topic stack.

In addition, there are other common operations to manipulate the theme stack. These actions include creating a
new topic, completing the current topic, and keeping the current topic [20]. The Create New theme action adds a
new theme to the stack when the user wants to start a new theme. Removes the top topic from the stack when the
user no longer wishes to discuss the topic or when the system considers the topic closed. The Keep Current topic
action indicates that the system has determined that information is still needed and that it needs to continue
discussing the current topic, so no changes will occur to the topic stack. These three basic actions cover most theme
change scenarios.

3.4 New evaluation method iEvaLM of conversational recommendation system

Considering the problems of existing evaluation methods, we propose a new evaluation method-iEvaLM, which
adopts interactive evaluation based on LLM user simulation. Our measurement methods integrate seamlessly with
existing CRS datasets, and the system-user interaction extends to every human-labeled conversation. The key idea
of our approach is to simulate real users based on LLMs' [21-24] excellent "role playing" capabilities. We treat
labeled items as user preferences and let LLM simulate the role of the user by way of instruction Settings. Through
the interaction, we can not only measure the accuracy of the recommendation by comparing the predicted item to
the label, but also measure the interpretability of the generated interpretation

3.5 through the LLM-based rater

(1) Attribute based question and answer

The behavior of the system is limited to choosing one of k predefined attributes to ask or recommend to the user. In
each round, we first ask the system to select one of these k+1 options, and then the user responds with a
template-based response [25]: answer the question with the properties of the target item or provide feedback on the
system's recommendations. An example of an interactive round might look like this:

Which genre do you like?

Which genre do you like?

(2) Free talk

This type has no restrictions on interaction, and both the system and the user are free to initiate. An example of an
interactive round might look like this:
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Do you have any specific genre in mind?

Do you have any specific genre in mind?

(3) To support interaction with the system, we use LLMs for user simulation. A simulated user can adopt one of
three behaviors:

Talk about preferences. When the system clarifies or asks about the user's preferences, the simulated user answers
with information about the target item.

Provide feedback. When the system recommends a list of items, the simulated user checks each item, providing
positive feedback if the target item is found, and negative feedback if not.

Complete the conversation [26]. If the system recommends exactly one target item, or if the interaction reaches a
certain number of rounds, the simulated user ends the conversation.

Specifically, we use the text-davinci-003 model and hand-constructed instructions to build a realistic user image.
In these instructions, we first fill the template with real objects and then define their behavior using a set of
hand-constructed rules.

4. CONCLUSION

In conclusion, the integration of large language models (LLMs) in the financial sector marks a significant
advancement in leveraging artificial intelligence for improved decision-making processes. The transformative
potential of LLMs extends across various domains within the financial industry, from data analysis and market
forecasting to risk assessment and customer management [27-28]. By automating complex data processing tasks,
LLMs not only enhance productivity but also enable financial professionals to gain deeper insights and make more
precise decisions. Moreover, the application of conversational intelligent reporting systems, driven by LLMs,
streamlines reporting processes and facilitates efficient communication, ultimately reshaping the landscape of
financial market operations [29-30].

Moving forward, it is imperative for financial institutions to continue exploring and harnessing the capabilities of
LLMs to stay competitive in an increasingly digitized and data-driven environment. Further research and
development efforts should focus on optimizing LLM-based systems for specific financial applications, improving
their real-time performance, and ensuring robustness and reliability in decision-making processes. By embracing
the potential of LLMs and conversational intelligent reporting systems, the financial industry can unlock new
opportunities for innovation, efficiency, and strategic growth in the years to come.
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