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Abstract: In recent years, methods founded on deep learning have exhibited notable efficacy within the field of medical
image denoising. However, the majority of deep learning approaches typically require paired training data, which poses
challenges for clinical diagnoses of conditions such as novel coronavirus pneumonia. This paper introduces an
unsupervised learning methodology for denoising magnetic resonance images (MRI). Firstly, we employ content encoders
and random noise encoders to separate the content information and noise artifacts from low-quality MRI images affected by
noise. Secondly, we regularize the noise distribution through Kullback-Leibler (KL) divergence loss. Thirdly, an adversarial
loss is incorporated into the model to augment the realism of the generated denoised images. Finally, we incorporate cycle
consistency and perceptual losses to ensure the coherence of content information between noisy input and denoised output
images. The effectiveness of the proposed approach is substantiated by experimental results, showcasing significant
enhancements in visual quality.
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1. INTRODUCTION

MRI images are cross-sectional images that display anatomical and pathological structures with varying grayscale
intensities. They are widely used in disease detection, diagnosis, and treatment monitoring. However, the imaging
process of MRI often introduces random noise, resulting in the production of low-quality MRI images. The quality
of MRI images not only impacts a physician's assessment of a patient's condition but also reduces the accuracy of
tasks. Image denoising can enhance the quality of a given image and address image degradation caused by random
noise.

To remove noise while preserving the integrity of image content, researchers have proposed classical spatial pixel
feature denoising algorithms such as Gaussian filtering, bilateral filtering, and arithmetic mean filtering[1]. In
contrast to these methods that utilize local image information, non-local means denoising algorithms utilize
information from the entire image. In 2008, Jose and colleagues successfully applied an improved algorithm for
MRI image denoising[2]. Transform domain denoising algorithms involve first transforming the image domain
and then applying denoising techniques indirectly. Dabov and others combined the calculation of similar blocks
means algorithm with denoising methods in the wavelet transform domain, resulting in the BM3D algorithm[3].
Building upon the BM3D algorithm, Eksioglu and colleagues proposed an MRI reconstruction algorithm[4].
Additionally, the low-rank constraint of image matrices is noteworthy[5] [6]. Zhang Yuhan and others proposed a
magnetic resonance image denoising model that combines low-rank constraints and sparse gradient priors[7].

Significant strides have been made by convolutional neural networks in the realm of image recognition [8] [9].
Consequently, there is a growing interest among researchers in image denoising algorithms grounded in
convolutional neural networks[10] [11]. Among them, methods such as DnCNN [10] [12], PRI-PB-CNN [13], and
MIFCN [14] exhibit strong scalability, providing excellent denoising results not only for natural images but also
for MRI image denoising.

Generative adversarial networks (GANs) have demonstrated substantial advantages in the generation of realistic
images[15] [16]. Consequently, researchers have combined GANs with convolutional neural networks for image
denoising[17]. Most mainstream denoising algorithms fall within the supervised domain, requiring paired training
data[18] [19]. However, obtaining paired data for model training is challenging in real-life scenarios. Transfer
learning is a widely used approach in medical image analysis[20], and researchers like Lu Siyuan have applied it to
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medical image detection[21]. In cases where training data is not paired, we also utilize transfer learning to train our
model.

We propose an image denoising theory based on deep learning[22] to obtain high-quality natural and MRI images.
The primary contributions of this paper can be summarized as follows: 1) We introduce an learning method based
on denoising, eliminating the need for paired training data; 2) We employ a disentangled representation to separate
the content information from noise in low-quality MRI images[23].

2. METHODOLOGY

This model consists of the following parts, as shown in Figure 1: 1) Content encoder ECL in the low-quality
images affected by random noise; content encoder ECH for the high-quality image domain; 2) Random noise
encoder EN; 3) Low-quality DL and high-quality DH; 4) Low-quality generator of images GL and high-quality
GH. In addition, the sample data, as shown in Figure 2, where sample l L pertains to the low-quality; sample h H
pertains to the domain of high-quality; ZN=En l is the distribution of noise features.

Figure 1: Overview of the denosing framework

Figure 2: Synthetic MR data (Longitudinal relaxation time) obtained from the SBD for Experiment.

2.1 Unraveling Representation

In the unsupervised domain, because the data is not paired [23] [24] [25],separating the content information from
the noise information in the images poses a challenge for us.. This paper improves the separation of content
information and noise information in noisy images from two aspects. On one hand, we extract as much effective
content information as possible from the low-quality images. Since high-quality images are not affected by noise,
Ech can extract content information without noise. To better extract content information from low-quality images,
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we adopt a strategy of sharing weight parameters between ECL and ECH . On the other hand, we constrain the
distribution of noise features Zn by adding KL divergence loss, making it approximately a normal distribution. The
KL divergence loss is shown in Equation (1).

�� � �� |� � =− � ��� ���� �� d � (1)

The minimization of KL divergence and Equation (2) are equivalent.

��� = �
� �=�

� ��
� + ��

� − ��� ��
� − �� (2)

2.2 Loss due to adversarial components

To enhance the generation of realistic high-quality images, we employ adversarial loss within both domains[22],
as shown in Equation (3).

��ℎ = �ℎ∼� ℎ log �� ℎ + ��∼� � log 1 − �� fakeh (3)

fakeh is defined as shown in Equation (4).

fakeh = �� ��
� � , �� (4)

During the training process, HG tries to make the generated image fakeh look more similar to the images from the
high-quality image domain, while HD aims to distinguish fakeh from real samples h. GH wants to minimize the
loss as much as possible during training, while DH wants to maximize the loss. The adversarial loss in the
low-quality image domain is specified in Equation(5).

��� = ��∼� � log �� � + �ℎ∼� ℎ log 1 − �� fakel (5)

fakeh is defined as shown in Equation (4).

fakel = �� ��
� ℎ , �� (6)

2.3 Cycle Consistency Loss

Under unsupervised conditions, only adversarial loss cannot guarantee the consistency of content information.
Taking inspiration from CycleGAN [22], we incorporated cycle consistency loss into the model, as depicted in
Equation(7).

���� = �ℎ∼� ℎ |ℎ − fakeh ℎ|1 + ��∼� � |� − fakell |1 (7)

In Section 2.2, we generated fakel and fakeh. In this section, we need to regenerate the input fakel into an image in
the high-quality domain. The reconstructed high-quality image is defined as shown in Equation (8).

fakehh = �� ��
� fakel , �� fakel (8)

Similarly, we reconstruct fakeh into the original low-quality domain image. The reconstructed low-quality image
is defined as shown in Equation (9).

fakell = �� ��
� fakeh , �� fakel (9)

2.4 KL Divergence Loss

We aim for the generated image fakel to only contain the noise information from the image l. However, the actual
experimental results do not align with our expectations. In fact, due to incomplete separation, the generated fakel
also contains content information from the image l. To improve the generation of fakel, we further constrain the
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model using perceptual loss. The perceptual loss is defined as shown in Equation (10).

��� = |���− layer fakel − ���− layer � |2
2 (10)

���− layer (�) represents the feature of a pre-trained convolutional neural network [26].

The model's objective function is described as shown in Equation (11):

Loss = ���� ��� + ��� + ������ + �������� + ������ (11)

Given the noisy MRI image lt, we need to input it into GH to obtain a high-quality image, as shown in Equation
(12):

����� = �� ��
� �� , �� �� (12)

3. 3. EXPERIMENTAL RESULTS

To assess the effectiveness of our proposed model, we conducted a comparative analysis with the classical image
denoising method Anisotropic Diffusion Filter (ADF) and the unsupervised image denoising approach CycleGAN
based on deep learning. The experiments were performed using synthetic MRI data (Longitudinal relaxation time
and PDw) acquired from SBD. The test data included Longitudinal relaxation time and PDw images with Rician
noise levels of 5%, 10%, 15%, 20%, 25%, and 30%.

Figures 3 to 8 present the experimental results for the Longitudinal relaxation time images, and from the
comparison, it is evident that our denoising method achieved good visual results. As the Rician noise intensity
increased, the denoising results from ADF increasingly contained noticeable noise. When the noise intensity
exceeded 20%, the residual noise significantly affected the visual performance.

Figure 3: Conducting an experiment on the Longitudinal relaxation time image with 5% Rician noise.
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Figure 4: Conducting an experiment on the Longitudinal relaxation time image with 10% Rician noise.

Figure 5: Conducting an experiment on the Longitudinal relaxation time image with 15% Rician noise.
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Figure 6: Conducting an experiment on the Longitudinal relaxation time image with 20% Rician noise.

Figure 7: Conducting an experiment on the Longitudinal relaxation time image with 25% Rician noise.
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Figure 8: Conducting an experiment on the Longitudinal relaxation time image with 30% Rician noise.

As shown in Table 1, the SSIM and PSNR of the ADF algorithm are lower than those of CycleGAN and our
proposed method. Our proposed algorithm achieved higher PSNR values compared to the other methods when the
noise level was below 25%. When the noise intensity increased to 30%, CycleGAN exhibited a slightly superior
PSNR value compared to our algorithm. However, our proposed algorithm still obtained competitive SSIM values,
as shown in Table 2.

Table 1: Our algorithm's PSNR value was slightly surpassed by that of CycleGAN.
METHOD 5% 10% 15% 20% 25% 30%

ADF 20.5106 20.2641 19.9734 18.8793 17.8912 16.7202
CycleGAN 20.1260 20.0429 20.1983 20.0368 20.0532 19.6573

Ours 22.4934 22.3121 22.2458 21.3219 20.3421 19.5304

Table 2: SSIM outcomes for different techniques applied to the Longitudinal relaxation time image under various
Rician noise levels.

Method 5% 10% 15% 20% 25% 30%
ADF 0.7234 0.7201 0.6231 0.5123 0.3814 0.3014

CycleGAN 0.7206 0.7342 0.6311 0.6207 0.5887 0.5301
Ours 0.7592 0.7123 0.6679 0.6021 0.5443 0.4894

4. CONCLUSION

The removal of noise from inferior-quality MRI images to obtain superior-quality MRI images is of considerable
importance. This paper introduces an unsupervised image denoising algorithm based on generative adversarial
networks. In the context of rapid advancements in Artificial Intelligence, especially in fields such as
Bioinformatics[27][28][29], we are witnessing a significant increase in the integration of Artificial Intelligence in
healthcare. This trend is also observable in the realm of computer vision [30][31]. The model disentangles the
content information and noise information of the noisy image through a disentangled representation and
regularizes the noise distribution using KL divergence loss. The model employs perceptual loss and
cycle-consistency loss to ensure consistency of content information. Moreover, adversarial loss is incorporated
into the model to generate more realistic MRI images. The experimental results illustrate that our proposed method
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achieves effective denoising effects.

Due to the relatively large number of parameters in this model, it requires certain specifications for the training
platform. Therefore, we plan to optimize the network structure to reduce the number of model parameters without
compromising the denoising performance.
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