
 

Journal of Theory and Practice of Engineering Science           ISSN: 2790-1513
Journal of Theory and Practice of Engineering Science                   ISSN: 2790-1505Journal of Theory and Practice of Engineering Science      ISSN: 2790-1505

www.centuryscipub.com

  
  
   

 

                       
Volume 3 Issue 10, 2023

  

  
  

  

Deep Learning for Precise Robot Position 

Prediction in Logistics 
  

Chang Che1, Bo Liu2, Shulin Li3, Jiaxin Huang4, Hao Hu5 
 

1The George Washington University, Mechanical Engineering, Atlanta, Georgia, USA 
2Zhejiang University, Hangzhou, Zhejiang, China 

3Trine University, Information Studies, Phoenix, Arizona, USA 
4Trine University, Information Studies, Phoenix, Arizona, USA 

5Zhejiang University, Hangzhou, Zhejiang, China  

 

Abstract: This study presents an interdisciplinary investigation at the nexus of mechanical engineering and computer 

science, aimed at advancing the field of logistics automation. In response to the escalating demands of global cargo 

transportation, the integration of these disciplines assumes paramount importance. Conducted within the domain of 

Dortmund University of Technology’s Material Flow and Warehousing Chair, this research focuses on the precise control 

of robots, a task contingent on accurate positional information. Leveraging a controlled internal logistics precinct, the study 

delves into the transformation of raw sensor data, comprising accelerometers, gyroscopes, and magnetometers, into precise 

position predictions. This process entails meticulous data preprocessing, encompassing synchronization and calibration 

procedures, yielding crucial parameters such as absolute velocity and accelerations along both parallel and perpendicular 

axes. The study employs deep learning, specifically a 2D Convolutional Neural Network (2D-CNN), for predictive modeling. 

This architecture excels in extracting intricate spatial features from sensor data. Training is conducted under the guidance 

of an Asymmetric Gaussian loss function, custom-tailored to accommodate the idiosyn- crasies of real-world sensor data. 

The results evince the efficacy of this approach, evidenced by remarkably low mean squared errors in predicting robot 

positions. Beyond its immediate applications in logistics automation, this research underscores the potential of 

interdisciplinary collaboration in addressing complex sensor data challenges.  
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1. INTRODUCTION 
 

The amalgamation of mechanical engineering and computer science stands as a powerful force poised to redefine 

logistics automation. In an era marked by an unprecedented surge in global cargo transportation, the imperative for 

precision, efficiency, and adaptability within logistics workflows has never been more pressing. This study represents 

a pioneering endeavor, focusing on the nuanced control of robotic systems, an endeavor contingent upon a precise 

understanding of their spatial coordinates. 

 

Within the field of logistics automation, the control and positioning of robots emerge as linchpins. The accurate 

orchestration of these mechanical entities holds the key to unlocking the full potential of automated logistics 

workflows. By precisely determining the position of each robot within a controlled environment, a multitude of 

tasks, ranging from inventory manage ment to order fulfillment, can be seamlessly executed. This imperative has 

catalyzed a multifaceted exploration into sensor data analysis, predictive modeling, and the amalgamation of 

mechanical engineering principles with advanced computational techniques. 

 

The research at hand is facilitated by a controlled internal logistics precinct replete with an array of sensors, 

including accelerometers, gyroscopes, and magnetometers. These sensors, strategically deployed across the 

logistics environment, furnish a trove of data that forms the basis for the development of precise position prediction 

models. The robustness and accuracy of these models are vital not only for the successful execution of automated 

logistics tasks but also for the broader advancement of the field. 

 

In light of these considerations, this study embarks on a comprehensive exploration of sensor data analysis and 

predictive modeling techniques, with a specific focus on the application of a 2D Convolutional Neural Network (2D-

CNN). By harnessing the spatial information embedded within the sensor data, this deep learning architecture holds 

the potential to unearth intricate features critical for precise position estimation. The deployment of an Asymmetric 

Gaussian loss function further refines the model’s ability to handle the inherent complexities and idiosyncrasies of 

real-world sensor data. 
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Through a meticulous synthesis of mechanical engineering principles and cutting-edge computer science 

techniques, this re- search not only addresses the immediate challenges of logistics automation but also lays the 

groundwork for the broader integration of these disciplines across various domains. The subsequent sections of this 

paper elucidate in detail the methodologies employed, the relevant literature in the field, and the experimental results, 

culminating in a conclusive assessment of the contri butions and potential avenues for future research. 

 

2. RELATED WORK 
 

The quest for precise robot positioning within logistics automation has been a focal point in recent research 

endeavors. A multitude of techniques and methodologies have been explored to address this critical challenge. 

 

One prominent avenue of investigation involves the application of sensor fusion techniques to enhance position 

estimation. Notably, studies by [1] and [2] have demonstrated the efficacy of combining data from accelerometers, 

gyroscopes, and magnetometers to achieve highly accurate robot localization. 

 

Machine learning approaches have also gained traction in this domain. Noteworthy contributions from [3] and [4] 

have show- cased the potential of employing advanced regression models to refine position predictions based on 

sensor data. 

 

Furthermore, advancements in deep learning architectures have been pivotal in refining robot positioning accuracy. 

The work of [5] highlights the transformative impact of convolutional neural networks (CNNs) in extracting salient 

features from sensor data for enhanced localization. 

 

In parallel, studies have delved into the development of specialized loss functions tailored to handle skewed or 

noisy sensor data distributions. Notably, the work by [6] introduces an Asymmetric Gaussian loss function, 

showcasing its effectiveness in enhancing the robustness of position prediction models. Song etc. [7] provide 

valuable insights for my research in robot position prediction, especially the adaptive gain control algorithm and 

the SWARM algorithm with adversarial agents, which enable communication-free operation while maintaining 

optimal functionality and performance. 

 

These seminal works collectively underscore the diverse approaches and methodologies that have been leveraged 

to tackle the challenge of precise robot positioning within logistics automation. Building upon these foundations, 

this study introduces a novel framework that synthesizes elements of sensor fusion, machine learning, and 

specialized loss functions to further refine position predictions. 

 

3. METHODOLOGY 
 

3.1 Model Architecture 

 

The Convolutional Neural Network (CNN) model is a powerful tool for extracting hierarchical features from structured 

data. In the context of this experiment, the CNN is utilized to predict the robot’s position based on the sensor data 

collected from the floor. The network architecture is meticulously designed to leverage spatial correlations present in 

the data. 

 

The CNN model comprises a series of convolutional layers followed by activation functions and pooling layers. Each 

convolutional layer is equipped with 64 filters of size 3*3. ELU (Exponential Linear Unit) is chosen as the activation 

function to introduce non-linearity. The same padding is employed to ensure the output feature maps have the same 

dimensions as the input feature maps. The architecture is further enhanced by employing average pooling layers (2*2) 

to downsample the feature maps. 

 

The final convolutional layer is followed by a fully connected layer with 128 neurons activated by ELU. The model 

architecture can be summarized as follows: 

 

Input→[[Conv2D(64)] × 3 → AveragePooling2D(2x2)] × 2 → [Conv2D(64)] × 2AveragePooling2D(2x2)

→ Flatten → Dense(128) × 2 → Output 
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3.2 Timestamps Step Analysis 

 

A crucial preprocessing step involves analyzing the timestamps step between received signals. This analysis 

provides insights into the frequency of data collection, which is vital for understanding the temporal granularity 

of the dataset. The majority of timestamps are concentrated around 0.23 seconds, indicating a relatively consistent 

interval between data points. This information is visually represented in Figure 1. 

 

Mathematical Formulation Let ti be the timestamp of the i-th received signal. The difference between 

consecutive times- tamps, denoted as ∆ti, can be expressed as: 

 

Δ𝑡𝑖 = 𝑡𝑖+1− 𝑡𝑖 (1) 
 

This metric quantifies the temporal gap between successive data points. Subsequently, the histogram of ∆t values 

is generated and analyzed. This histogram provides crucial insights into the distribution of timestamps, offering 

valuable information about the data collection process and potential temporal patterns within the dataset. 

 
Figure 1: Timestamps Step Analysis 

 

3.3 KDE Data Set Construction 

 

Kernel Density Estimation (KDE) plays a pivotal role in capturing the probability distribution of velocity data. 

Specifically, we focus on the absolute value of velocity (vel abs). This crucial feature is selected and combined 

with other relevant data along the specified axis to form the KDE data set. The visual representation of this process 

is illustrated in Figure 2. 

Figure 2: KDE Data Set Construction 

KDE estimates the probability density function of a random variable, denoted as fˆh(x), based on a given set of 

data points 
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x1, x2, . . . , xn. This estimation is mathematically expressed as: 

 

𝑓ℎ̂(𝑥) =
1

𝑛 ⋅ ℎ
∑𝐾 (

𝑥 − 𝑥𝑖
ℎ

)

𝑛

𝑖=1

(2) 

 

Here, K represents the kernel function and h is the bandwidth. This process provides valuable insights into the 

underlying distribution of the velocity data.  

 

3.4 Feature Crosses 

 

Explicit feature crosses are strategically applied to capture intricate relationships between positions, accelerations, 

and time. By performing these cross operations, we generate distinct velocity features that are instrumental in 

understanding the dynamics of the system. 

 

The cross features are defined as follows: 

 
𝑣cross1 = 𝑝𝑜𝑠 ⋅ 𝑎𝑐𝑐 (3) 
𝑣cross2 = 𝑝𝑜𝑠 ⋅ 𝑡 (4) 
𝑣cross3 = 𝑎𝑐𝑐 ⋅ 𝑡 (5) 

 

These newly formed features encapsulate nuanced interactions between the key variables, enhancing the model’s 

ability to discern complex patterns. 

 

3.5 Strips Normalization 

 

Recognizing the substantial variability in feature values across different strips, a critical preprocessing step 

involves grouping the training set by strips and applying a normalization procedure. This essential transformation 

ensures that the data adheres to a Gaussian distribution, facilitating smoother and more robust model training. The 

visual representation of this normalization process is depicted in Figure 3. 

Figure 3: Strips Normalization 

 

This normalization technique proves instrumental in aligning the disparate feature scales, ultimately enhancing the 

model’s performance and interpretability. 

 

Let X be the training data set with features xi and si representing the strip index. The normalized feature x′
i is 

calculated as: 

 

𝑥𝑖
′ =

𝑥𝑖 − 𝜇𝑠𝑖
𝜎𝑠𝑖

(6) 

where µsi and σsi are the mean and standard deviation of strip si respectively. This transformation ensures that 

the features have zero mean and unit variance within each strip. 
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3.6 Loss Function and Optimization 

 

To effectively handle the challenge of skewed data, a custom loss function based on the Asymmetric Gaussian 

distribution is implemented. This specialized loss function, denoted as log likelihood loss(θ), is defined as follows: 

 

Loss = −
1

𝑛
∑[log(𝑝(𝑥𝑖; 𝜃)) ⋅ 𝑤(𝑥𝑖)]

𝑛

𝑖=1

(7) 

 

Here, xi represents a data point, p(xi; θ) is the probability density function parameterized by θ, and w(xi) is a 

weight function associated with the data point. This loss formulation is tailored to account for the inherent 

skewness in the dataset, ensuring that the model effectively captures the underlying distribution of the data. 

 

The Adam optimizer is selected for its efficiency in training deep neural networks. This optimizer adapts the 

learning rates for each parameter, making it well-suited for handling noisy or sparse gradients. The learning rate 

is set to 0.0001 to strike a balance between convergence speed and stability. Additionally, the AMSGrad variant 

is enabled to further enhance the optimizer’s performance in terms of stability and convergence. 

 

This combination of a custom loss function and the Adam optimizer with AMSGrad provides a robust framework 

for training the neural network, allowing it to effectively learn the complex relationships within the data and make 

accurate predictions. 

 

4. EXPERIMENT RESULTS 
 

The experiments yielded highly promising results, demonstrating the effectiveness of the proposed methodology 

in predicting the robot’s position based on the sensor data collected from the floor. To quantitatively assess the 

model’s performance, the MSE was used as the primary evaluation metric. The MSE measures the average squared 

difference between predicted and actual values, providing a robust indicator of predictive accuracy. The evaluation 

was conducted on separate test datasets, ensuring an unbiased assessment of the model’s generalization ability. 

 

The experiment results reaffirmed the efficacy of the proposed methodology. The model demonstrated exceptional 

predictive accuracy in estimating the robot’s position based on the sensor data. The low MSE score of 0.01015 on 

the test set further validates the model’s performance. 

Figure 4: Training and Validation Loss Curves 

 

The training and validation loss curves, depicted in Figure 4, provided valuable insights into the model’s learning 

process. The curves illustrated a steady convergence of the loss function during training, indicating that the model 

effectively learned the underlying patterns in the data. 
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5. CONCLUSION 
 

In this study, we have introduced a novel methodology tailored for the mechanical domain, specifically focused 

on predicting the position of a robot based on sensor data collected from the floor. The approach leveraged a 

Convolutional Neural Network (CNN) model, which proved highly effective in extracting and learning spatial 

features from the sensor data. 

 

The experimental results demonstrated the robustness and accuracy of the proposed methodology, with consistently 

low Mean Squared Error (MSE) values on test sets. This underscores the model’s high predictive capability in the 

mechanical field, particularly in logistics and automation industries. The success of this methodology holds 

significant implications for various real-world applications, emphasizing its potential in industries where precise 

spatial awareness is paramount. 
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